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Bayesian Gaussian regression and the EM algorithm I

Bayesian Gaussian linear regression

Consider a Bayesian conjugate Gaussian linear regression with
multidimensional outputs. We observe inputs x1, . . . , xn ∈ Rd

and corresponding outputs y1, . . . , yn ∈ Rm, modelled as

yi = ϕ(xi)θ + ηi , (1)

where ϕ : Rd 7→ Rm × Rd ′
is a known embedding function.

The parameters θ are assumed sampled from N (0,A−1) with
an unknown precision matrix A ∈ Rd ′×d ′

, and for each i ≤ n,
ηi ∼ N (0,B−1

i ) are additive noise vectors with precision matri-
ces Bi ∈ Rm×m relating the m output dimensions.
We then use the stacked notation: Y ∈ Rnm for concatenation
of y1, . . . , yn; B ∈ Rnm×nm for a block diagonal matrix with blocks
B1, . . . ,Bn; and Φ = [ϕ(X1)

T ; . . . ;ϕ(Xn)
T ]T ∈ Rnm×d ′

for the em-
bedded design matrix.



Bayesian Gaussian regression and the EM algorithm II

Posterior inference & EM algorithm [Bis06]
Our goal is to infer the posterior distribution for the parameters θ
given our observations, under the setting of A of the form A = αI
for α > 0 most likely to have generated the observed data.

We use the iterative procedure of [Mac92], which alternates com-
puting the posterior for θ, denoted Π, for a given choice of A, and
updating A, until the pair (A,Π) locally converge.
EM algorithm starts with some initial A ∈ Rd ′×d ′

, and iterates:

▶ (E step) Given A, the posterior for θ, denoted Π, is
computed exactly as

Π = N (θ̄,H−1), (2)

where H = M + A, where M = ΦT BΦ, and θ̄ = H−1ΦT BY .



Bayesian Gaussian regression and the EM algorithm III

▶ (M step) We lower bound the log-probability density of the
observed data, i.e. the evidence, for the model with
posterior Π and precision A′ as

log p(Y ;A′) ≥ −1
2∥θ̄∥2A′ − 1

2 log det(I + A′−1M) + C (3)
:=M(A′),

for C independent of A′. We choose an A that improves
this lower bound.

Limited scalability

The above inference and hyperparameter selection procedure
for Π and A is futile when both d ′ and nm are large.



Evidence maximisation using stochastic approximation I

M-step via stochastic “Mackay update”

Let’s assume we can efficiently obtain samples ζ1, . . . , ζk ∼ Π0

at each step, where Π0 is a zero-mean version of the posterior
Π, and access to θ̄, the mean of Π.

[APB+22] show that α = γ̂/∥θ̄∥2, where

γ = Tr {H−1M} = Tr {H− 1
2 MH− 1

2} (4)

= E[ζT
1 Mζ1] ≈ 1

k

∑k
j=1 ζ

T
j Φ

T BΦζj := γ̂. (5)

where the quantity γ is the effective dimension of the re-
gression problem. It can be interpreted as the number of
directions in which the weights θ are strongly determined
by the data.



Evidence maximisation using stochastic approximation II

E-step via sampling from the linear model’s posterior

We turn to sampling from Π0 = N (0,H−1).
It is known that for E ∈ Rnm the concatenation of ϵ1, . . . , ϵn

with ϵi ∼ N (0,B−1
i ) and θ0 ∼ N (0,A−1), the minimiser of

is a random variable ζ with distribution Π0:

L(z) = 1
2∥Φz − E∥2

B + 1
2∥z − θ0∥2

A. (6)

This is called the “sample-then-optimise” method [PY10].
We may thus obtain a posterior sample by optimising this
quadratic loss for a given sample pair (E , θ0).



NN uncertainty quantification as linear model inference I

Linearised Laplace method

We train a NN of the form f : Rd ′ × Rd 7→ Rm, obtaining weights
w̄ ∈ Rd ′

optimising

L(f (w , ·)) =
n∑

i=1

ℓ(yi , f (w , xi)) +R(w) (7)

We then resort to the linearised Laplace method:

▶ We take a first-order Taylor expansion of f around w̄ ,
yielding the surrogate model

h(θ, x) = f (w̄ , x) + ϕ(x)(θ − w̄), (8)

for ϕ(x) = ∇w f (w̄ , x). This is an affine model in the
features ϕ(x) given by the network Jacobian at x .



Algorithm I

https://github.com/educating-dip/bayes dip

Algorithm 1: Sampling-based linearised Laplace
Inputs: initial α > 0; k , k ′ ∈ N, number of samples for

stochastic EM and prediction, respectively.
Sample random θn

1 , . . . , θ
n
k

while α has not converged do
Find θ̄ by optimising linear model loss L(h(θ, ·))
Draw posterior samples ζ1 . . . ζk by optimising objective
L with θn

1 , . . . , θ
n
k

Estimate effective dimension γ̂, using samples ζ1 . . . ζk
Update prior precision α← γ̂/∥θ̄∥22

Output: posterior samples ζ ′1, . . . , ζ
′
k



Tomographic reconstruction & UQ I

Problem Setup: Cone-Beam CT reconstruction

CT reconstruction consists in solving a linear inverse problem in
imaging. We observe a set of measurements y ∈ Rm, which we
assume to be generated as

y =Ux∗ + η (9)

for U ∈ Rm×d the discrete Radon transform, x∗ ∈ Rd the image
to reconstruct and η ∼ N (0, I) random noise. We have m ≪ d ,
making the problem under-constrained.



Tomographic reconstruction & UQ II

Reconstruction with the Deep Image Prior

We reconstruct x∗ with Deep Image prior [UVL20], which trains
w ∈ Rd ′

of a fully convolutional U-Net autoencoder f : Rd ′ → Rd ,
where the input is fixed.

To estimate the uncertainty in this reconstruction, we linearise
the U-Net around w̄ .

This leaves us with a model affine in the parameters and with
design matrix UΦ ∈ Rm×d ′

.



Results I

We consider 3D reconstruction of a Walnut with a downscaled
image resolution of (167px)3, from 20 equally distributed angles,
sub-sampling projection rows and columns by a factor of 3.
Here n = 1,m = 1.6M,d

′ ≈ 5M.
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Figure: Traces of prior precision α and eff. dim. γ̂ vs EM steps
for the tomographic reconstruction task.



Results II
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Results III
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Figure: Histograms of the voxel-wise error computed between
the reconstructed walnut and the ground-truth along with the
histograms of predictive standard deviations across voxels.
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Hernández-Lobato, Sampling-based inference for large linear models, with application to linearised laplace,
arXiv preprint arXiv:2210.04994 (2022).

Christopher M Bishop, Pattern recognition and machine learning, springer, 2006.

David John Cameron Mackay, Bayesian methods for adaptive models, Ph.D. thesis, USA, 1992.

George Papandreou and Alan L. Yuille, Gaussian sampling by local perturbations, Advances in Neural
Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems
2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada (John D.
Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, eds.), Curran
Associates, Inc., 2010, pp. 1858–1866.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky, Deep image prior, Int. J. Comput. Vis. 128 (2020),
no. 7, 1867–1888.


