Sampling-Based Inference for Linearised Deep Image Prior with Application to Cone-Beam CT Reconstruction

Riccardo Barbano

Computer Science Department, University College London
A joint work with Shreyas Padhy and Javier Antoran
Extending [APB+22] to Cone-Beam CT reconstruction

Overview

- 1. Bayesian linear regression and the EM algorithm
- 2. Evidence maximisation using stochastic approximation
- 3. NN uncertainty quantification as linear model inference
- 4. Tomographic reconstruction & uncertainty quantification
- 5. Results

Bayesian Gaussian regression and the EM algorithm I

Bayesian Gaussian linear regression

Consider a Bayesian conjugate Gaussian linear regression with multidimensional outputs. We observe inputs $x_1, \ldots, x_n \in \mathbb{R}^d$ and corresponding outputs $y_1, \ldots, y_n \in \mathbb{R}^m$, modelled as

$$y_i = \phi(x_i)\theta + \eta_i, \tag{1}$$

where $\phi \colon \mathbb{R}^d \mapsto \mathbb{R}^m \times \mathbb{R}^{d'}$ is a known embedding function. The parameters θ are assumed sampled from $\mathcal{N}(0,A^{-1})$ with an unknown precision matrix $A \in \mathbb{R}^{d' \times d'}$, and for each $i \leq n$, $\eta_i \sim \mathcal{N}(0,B_i^{-1})$ are additive noise vectors with precision matrices $B_i \in \mathbb{R}^{m \times m}$ relating the m output dimensions.

We then use the stacked notation: $Y \in \mathbb{R}^{nm}$ for concatenation of y_1, \ldots, y_n ; $B \in \mathbb{R}^{nm \times nm}$ for a block diagonal matrix with blocks B_1, \ldots, B_n ; and $\Phi = [\phi(X_1)^T; \ldots; \phi(X_n)^T]^T \in \mathbb{R}^{nm \times d'}$ for the embedded design matrix.

Bayesian Gaussian regression and the EM algorithm II

Posterior inference & EM algorithm [Bis06]

Our goal is to infer the posterior distribution for the parameters θ given our observations, under the setting of A of the form $A = \alpha I$ for $\alpha > 0$ most likely to have generated the observed data.

We use the iterative procedure of [Mac92], which alternates computing the posterior for θ , denoted Π , for a given choice of A, and updating A, until the pair (A, Π) locally converge.

EM algorithm starts with some initial $A \in \mathbb{R}^{d' \times d'}$, and iterates:

► (E step) Given A, the posterior for θ , denoted Π , is computed exactly as

$$\Pi = \mathcal{N}(\bar{\theta}, H^{-1}), \tag{2}$$

where H = M + A, where $M = \Phi^T B \Phi$, and $\bar{\theta} = H^{-1} \Phi^T B Y$.

Bayesian Gaussian regression and the EM algorithm III

(M step) We lower bound the log-probability density of the observed data, i.e. the evidence, for the model with posterior Π and precision A' as

$$\log p(Y; A') \ge -\frac{1}{2} \|\bar{\theta}\|_{A'}^2 - \frac{1}{2} \log \det(I + A'^{-1}M) + C$$
 (3)
:= $\mathcal{M}(A')$,

for C independent of A'. We choose an A that improves this lower bound.

Limited scalability

The above inference and hyperparameter selection procedure for Π and A is futile when both d' and nm are large.

Evidence maximisation using stochastic approximation I

M-step via stochastic "Mackay update"

Let's assume we can efficiently obtain samples $\zeta_1,\ldots,\zeta_k\sim\Pi^0$ at each step, where Π^0 is a zero-mean version of the posterior Π , and access to $\bar{\theta}$, the mean of Π .

[APB⁺22] show that $\alpha = \hat{\gamma}/\|\bar{\theta}\|^2$, where

$$\gamma = \text{Tr}\{H^{-1}M\} = \text{Tr}\{H^{-\frac{1}{2}}MH^{-\frac{1}{2}}\}$$
 (4)

$$= \mathbb{E}[\zeta_1^T M \zeta_1] \approx \frac{1}{k} \sum_{j=1}^k \zeta_j^T \Phi^T B \Phi \zeta_j := \hat{\gamma}.$$
 (5)

where the quantity γ is the effective dimension of the regression problem. It can be interpreted as the number of directions in which the weights θ are strongly determined by the data.

Evidence maximisation using stochastic approximation II

E-step via sampling from the linear model's posterior

We turn to sampling from $\Pi^0 = \mathcal{N}(0, H^{-1})$. It is known that for $\mathcal{E} \in \mathbb{R}^{nm}$ the concatenation of $\epsilon_1, \ldots, \epsilon_n$ with $\epsilon_i \sim \mathcal{N}(0, B_i^{-1})$ and $\theta^0 \sim \mathcal{N}(0, A^{-1})$, the minimiser of is a random variable ζ with distribution Π^0 :

$$L(z) = \frac{1}{2} \|\Phi z - \mathcal{E}\|_{\mathbf{B}}^2 + \frac{1}{2} \|z - \theta^0\|_{\mathcal{A}}^2.$$
 (6)

This is called the "sample-then-optimise" method [PY10]. We may thus obtain a posterior sample by optimising this quadratic loss for a given sample pair (\mathcal{E}, θ^0) .

NN uncertainty quantification as linear model inference I

Linearised Laplace method

We train a NN of the form $f: \mathbb{R}^{d'} \times \mathbb{R}^d \mapsto \mathbb{R}^m$, obtaining weights $\bar{w} \in \mathbb{R}^{d'}$ optimising

$$\mathcal{L}(f(w,\cdot)) = \sum_{i=1}^{n} \ell(y_i, f(w, x_i)) + \mathcal{R}(w)$$
 (7)

We then resort to the linearised Laplace method:

• We take a first-order Taylor expansion of f around \bar{w} , yielding the surrogate model

$$h(\theta, x) = f(\bar{w}, x) + \phi(x)(\theta - \bar{w}), \tag{8}$$

for $\phi(x) = \nabla_w f(\bar{w}, x)$. This is an affine model in the features $\phi(x)$ given by the network Jacobian at x.

Algorithm I

https://github.com/educating-dip/bayes_dip

Algorithm 1: Sampling-based linearised Laplace

Inputs: initial $\alpha > 0$; $k, k' \in \mathbb{N}$, number of samples for stochastic EM and prediction, respectively.

Sample random $\theta_1^n, \dots, \theta_k^n$

while α has not converged do

Find $\bar{\theta}$ by optimising linear model loss $\mathcal{L}(h(\theta,\cdot))$

Draw posterior samples $\zeta_1 \dots \zeta_k$ by optimising objective I with $\theta^n = \theta^n$

L with $\theta_1^n, \ldots, \theta_k^n$

Estimate effective dimension $\hat{\gamma}$, using samples $\zeta_1 \dots \zeta_k$

Update prior precision $\alpha \leftarrow \hat{\gamma}/\|\bar{\theta}\|_2^2$

Output: posterior samples $\zeta'_1, \ldots, \zeta'_k$

Tomographic reconstruction & UQ I

Problem Setup: Cone-Beam CT reconstruction

CT reconstruction consists in solving a linear inverse problem in imaging. We observe a set of measurements $y \in \mathbb{R}^m$, which we assume to be generated as

$$y = Ux^* + \eta \tag{9}$$

for $U \in \mathbb{R}^{m \times d}$ the discrete Radon transform, $x^* \in \mathbb{R}^d$ the image to reconstruct and $\eta \sim \mathcal{N}(0, I)$ random noise. We have $m \ll d$, making the problem under-constrained.

Tomographic reconstruction & UQ II

Reconstruction with the Deep Image Prior

We reconstruct x^* with Deep Image prior [UVL20], which trains $w \in \mathbb{R}^{d'}$ of a fully convolutional U-Net autoencoder $f : \mathbb{R}^{d'} \to \mathbb{R}^d$, where the input is fixed.

To estimate the uncertainty in this reconstruction, we linearise the U-Net around \bar{w} .

This leaves us with a model affine in the parameters and with design matrix $U\Phi \in \mathbb{R}^{m \times d'}$.

Results I

We consider 3D reconstruction of a Walnut with a downscaled image resolution of $(167px)^3$, from 20 equally distributed angles, sub-sampling projection rows and columns by a factor of 3. Here $n = 1, m = 1.6M, d' \approx 5M$.

Figure: Traces of prior precision α and eff. dim. $\hat{\gamma}$ vs EM steps for the tomographic reconstruction task.

Results II

Results III

Figure: Histograms of the voxel-wise error computed between the reconstructed walnut and the ground-truth along with the histograms of predictive standard deviations across voxels.

References I

Javier Antorán, Shreyas Padhy, Riccardo Barbano, Eric Nalisnick, David Janz, and José Miguel Hernández-Lobato, Sampling-based inference for large linear models, with application to linearised laplace, arXiv preprint arXiv:2210.04994 (2022).

Christopher M Bishop, Pattern recognition and machine learning, springer, 2006.

David John Cameron Mackay, Bayesian methods for adaptive models, Ph.D. thesis, USA, 1992.

George Papandreou and Alan L. Yuille, <u>Gaussian sampling by local perturbations</u>, Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada (John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, eds.), Curran Associates, Inc., 2010, pp. 1858–1866.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky, <u>Deep image prior</u>, Int. J. Comput. Vis. **128** (2020), no. 7, 1867–1888.