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Bayesian Gaussian linear regression

Consider a Bayesian conjugate Gaussian linear regression with

multidimensional outputs. We observe inputs x1,...,x, € R
and corresponding outputs y4, ..., ¥, € R™, modelled as
Yi = &(xi)0 + i, (1)

where ¢: RY — R™ x R? is a known embedding function.
The parameters 6 are assumed sampled from A/(0, A~") with
an unknown precision matrix A € R %9 and for each i < n,
ni ~ N(O, B,‘1) are additive noise vectors with precision matri-
ces B; € R™*™M relating the m output dimensions.

We then use the stacked notation: Y € R" for concatenation
of y1,...,¥n; B € R"*"M for a block diagonal matrix with blocks
Bi,...,Bp;and ® = [¢(X))7;... ; ¢(Xn)T]T € R"™*¥ for the em-
bedded design matrix.
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Posterior inference & EM algorithm [Bis06]

Our goal is to infer the posterior distribution for the parameters 6
given our observations, under the setting of A of the form A = a/
for a > 0 most likely to have generated the observed data.

We use the iterative procedure of [Mac92], which alternates com-
puting the posterior for 8, denoted I, for a given choice of A, and
updating A, until the pair (A, ) locally converge.

EM algorithm starts with some initial A € R?*?'| and iterates:

» (E step) Given A, the posterior for 6, denoted I, is
computed exactly as

n=N(@,H), ()

where H =M + A, where M = ¢"Bd, and § = H-'oBY.
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> (M step) We lower bound the log-probability density of the
observed data, i.e. the evidence, for the model with
posterior 1 and precision A’ as

logp(Y; A') > —1|10]12, — % logdet(/+ A~'M)+C (3)
= M(A),
for C independent of A’. We choose an A that improves

this lower bound.

Limited scalability

The above inference and hyperparameter selection procedure
for N and A is futile when both @’ and nm are large.
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M-step via stochastic “Mackay update”

Let's assume we can efficiently obtain samples ¢y, ...,k ~ MN°
at each step, where NO is a zero-mean version of the posterior
1, and access to ¢, the mean of 1.

[APB+22] show that a = 4/||0|2, where

y=Tr{H "M} =Tr{H :MH z} (4)
=E[([MG] ~ |, S5 JOTBOG =3 (5)

where the quantity ~ is the effective dimension of the re-
gression problem. It can be interpreted as the number of
directions in which the weights 6 are strongly determined
by the data.
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E-step via sampling from the linear model’s posterior

We turn to sampling from M° = A/(0, H—).

It is known that for £ € R" the concatenation of ¢4,. .., ¢,
with ¢; ~ A(0, B ") and €° ~ A/(0, A=), the minimiser of
is a random variable ¢ with distribution MN°:

L(z) = 3ll®z — £I§ + 3l 2 — 6°[% (6)

This is called the “sample-then-optimise” method [PY10].
We may thus obtain a posterior sample by optimising this
quadratic loss for a given sample pair (£, 6°).
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Linearised Laplace method

We train a NN of the form f: R? x R — R™, obtaining weights
w € RY optimising

n
L(F(w,) =D Ui f(w, x)) + R(w) (7)
i=1
We then resort to the linearised Laplace method:

» We take a first-order Taylor expansion of f around w,
yielding the surrogate model

h(H,X):f(V_V,X)—‘r¢(X)((9— V_V)7 (8)

for ¢(x) = Vuf(w, x). This is an affine model in the
features ¢(x) given by the network Jacobian at x.
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https://github.com/educating-dip/bayes dip

Algorithm 1: Sampling-based linearised Laplace

Inputs: initial « > 0; k, k" € N, number of samples for
stochastic EM and prediction, respectively.
Sample random 67, ..., 6/
while o has not converged do
Find # by optimising linear model loss £(h(4,-))
Draw posterior samples (.. . {x by optimising objective
L with 67, ..., 6/
Estimate effective dimension 4, using samples (1 . .. (x
Update prior precision o < 45/(0|3
Output: posterior samples (i, ..., ¢,
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Problem Setup: Cone-Beam CT reconstruction

CT reconstruction consists in solving a linear inverse problem in
imaging. We observe a set of measurements y € R, which we
assume to be generated as

y=Ux"+n 9

for U € R™<9 the discrete Radon transform, x* € R? the image
to reconstruct and n ~ A/(0, /) random noise. We have m < d,
making the problem under-constrained.
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Reconstruction with the Deep Image Prior

We reconstruct x* with Deep Image prior [UVL20], which trains
w € R? of a fully convolutional U-Net autoencoder f : R% — R,
where the input is fixed.

To estimate the uncertainty in this reconstruction, we linearise
the U-Net around w.

This leaves us with a model affine in the parameters and with
design matrix Ud € R™<",
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We consider 3D reconstruction of a Walnut with a downscaled
image resolution of (167px)2, from 20 equally distributed angles,
sub-sampling projection rows and columns by a factor of 3.
Here n=1,m=1.6M,d ~ 5M.
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Figure: Traces of prior precision « and eff. dim. 4 vs EM steps
for the tomographic reconstruction task.
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Figure: Histograms of the voxel-wise error computed between
the reconstructed walnut and the ground-truth along with the
histograms of predictive standard deviations across voxels.

u]
o)
I
ul
it



References |

@ Javier Antoran, Shreyas Padhy, Riccardo Barbano, Eric Nalisnick, David Janz, and José Miguel

Hernandez-Lobato, Sampling-based inference for large linear models, with application to linearised laplace,
arXiv preprint arXiv:2210.04994 (2022).

Ia Christopher M Bishop, Pattern recognition and machine learning, springer, 2006.

ﬁ David John Cameron Mackay, Bayesian methods for adaptive models, Ph.D. thesis, USA, 1992.

ﬁ George Papandreou and Alan L. Yuille, Gaussian sampling by local perturbations, Advances in Neural
Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems
2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada (John D.
Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, eds.), Curran
Associates, Inc., 2010, pp. 1858—1866.

@ Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky, Deep image prior, Int. J. Comput. Vis. 128 (2020),
no. 7, 1867—1888.



