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Resin Transfer Moulding (RTM)
Uses of RTM: aerospace, automotive and marine industries.
Features: lightweight, high relative strength, form complex shapes, durable.

Figure: (Left to right, top to bottom) Composition of Boeing 787 [1], Formula 1 car [2], rowing boat [3], boat propeller [4],wind turbine rotator blade [5], car wing mirror [6].
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The RTM Process
RTM uses 2 materials: a fibre-reinforced preform and liquid resin.

Figure: (a) Carbon fibre preform [7] Figure: (b) RTM schematic [8] Figure: (c) Finished composite part [9]
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The RTM Process
RTM uses 2 materials: a fibre-reinforced preform and liquid resin.

Figure: (a) Carbon fibre preform [7] Figure: (b) RTM schematic [8] Figure: (c) Finished composite part [9]

Motivation
Variations in permeabilityw�
Inhomogeneous resin floww�

Variations in mechanicalproperties of partw�
Part discarded upon testing

Aims
Inverse problem: find (log-)permeabilityusing pressure data recorded duringinjection to:

1 aid non-destructive evaluation
2 support the use of active controlRTM

We emphasize the importance of speed.
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Darcy Flow in 1D
Solution in 1D [10, 11, 12]
Let u ∈ X ≡ L2([0,D∗]). Define Fu(x) :=

∫ x
0 e−u(z)dz and Wu(x) :=

∫ x
0 Fu(ξ)dξ.

Υu(t) = W−1
u

(pI − p0

µϕ
t
)
, (1)

pu(x , t) =

{
pI − (pI − p0)

Fu(x)
Fu(Υu(t))

, x ∈ [0,Υu(t)),
p0, x ∈ [Υu(t),D∗].

(2)

Fréchet derivative of the forward problem
For 0 ≤ x ≤ Υ(t), the Frechet derivative of (Υ, p) w.r.t u is given by:

DΥu(t)h =

∫ Υ(t)
0

∫ ξ

0 e−u(z)h(z)dzdξ
Fu(Υ(t))

, (3)
Dpu(x , t)h =

(pI − p0)

Fu(Υ(t))2

[
Fu(Υ(t))

∫ x

0
e−u(z)h(z)dz − Fu(x)

∫ Υ(t)

0
e−u(z)h(z)dz

+ Fu(x)e−u(Υ(t))DΥu(t)h
]
. (4)
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The Forward Map
At N times 0 < t1 < ... < tN < τ∗, suppose M sensors are used to record resinpressure. Let Y ≡ RNM . Define the forward map G : (X , ⟨·, ·⟩X ) → (Y , ⟨·, ·⟩Y ) by

G(u) =

[{
pu(xm, t1)

}M

m=1
, ...,

{
pu(xm, tN)

}M

m=1

]T

, u ∈ X . (5)
Example: let M = N = 5.
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Figure: The forward problem and the forward map
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The Inverse Problem
Estimate u ∈ X in the expression

y = G(u) + η, (6)
where

G : (X , ⟨·, ·⟩X ) → (Y , ⟨·, ·⟩Y ) is the forward map
y ∈ Y are measurements of the system
η ∈ Y is random measurement noise

The Bayesian approach
Assume that both u and η are Gaussian random variables/fields:

1 u ∼ N(ū, C), where C arises from the Matérn [14] covariance function
2 η ∼ N(0,Σ) =⇒ y |u ∼ N(G(u),Σ), where Σ is given and diagonal

Using Bayes’ rule P(u|y) ∝ P(u)P(y |u), the posterior is given by
P(u|y) ∝ exp

(
− 1

2

∥∥∥Σ−1/2(y − G(u)
)∥∥∥2

Y
− 1

2

∥∥∥C−1/2(u − ū)
∥∥∥2

X

)
. (7)
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Sampling from the Posterior
Case study: G is linear, i.e. G(u) = Gu

Recall u ∼ N(ū, C) and η ∼ N(0,Σ). The posterior is Gaussian u|y ∼ N(û, Ĉ) with
û = ū + CG∗

[
GCG∗ +Σ

]−1(
y − Gū

)
, (8)

Ĉ = C − CG∗
[
GCG∗ +Σ

]−1
GC (9)

Case study: G is non-linear
No such solution exists. We must use Markov chain Monte Carlo (MCMC) methods.
Linearisation around the maximum a-posteriori (LMAP) estimate
Suppose G(u) ≈ G(umap) + DG(umap)(u − umap). Approximate u ≈ N(umap, Cmap) with

umap = argmin
u∈X

1
2

∥∥∥Σ−1/2(y − G(u)
)∥∥∥2

Y
+

1
2

∥∥∥C−1/2(u − ū)
∥∥∥2

X
, (10)

Cmap = C − CDG∗(umap)
[
DG(umap)CDG∗(umap) + Σ

]−1
DG(umap)C. (11)
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LMAP
Linearisation around the maximum a-posteriori (LMAP) estimate
For non-linear G, the approximate posterior is u|y ≈ N(umap, Cmap) where

umap = argmin
u∈X

1
2

∥∥∥Σ−1/2(y − G(u)
)∥∥∥2

Y
+

1
2

∥∥∥C−1/2(u − ū)
∥∥∥2

X
, (12)

Cmap = C − CDG∗(umap)
[
DG(umap)CDG∗(umap) + Σ

]−1
DG(umap)C. (13)

Here, DG∗(u) : Y → X is the adjoint of DG(u) : X → Y defined by
⟨DG(u)h, v⟩Y = ⟨h,DG∗(u)v⟩X , ∀h ∈ X , v ∈ Y . (14)

Levenberg-Marquardt algorithm (u → umap)
Define Ak := DG(uk ) and A∗

k := DG∗(uk ). Let u0 = ū and αk → 0 according to [19].
uk+1 = uk +

ū − uk

1 + αk
+ CA∗

k

[
AkCA∗

k + (1 + αk )Σ
]−1
(

y − G(uk )−
Ak (ū − uk )

1 + αk

)
. (15)
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The Adjoint
Note DG(u)h =

[{
Dpu(xm, t1)h

}M
m=1, ...,

{
Dpu(xm, tN)h

}M
m=1

]T .
Riesz Representation Theorem [20]
Since DG(u) : X → Y is linear and bounded, then ∃Rn

m(u) ∈ X such that ∀h ∈ X

[DG(u)h]i = Dp(xm, tn)h = ⟨C−1/2Rn
m(u), C−1/2h⟩X . (16)

The Representers
The representers are given by Rn

m = H(Υ(tn)− xm)CQn
m where

Qn
m[u](x) =

(pI − p0)

Fu(Υ(tn))2

[
Fu(Υ(tn))H(xm − x)e−u(x) − Fu(xm)H(Υ(tn)− x)e−u(x) (17)

+
Fu(xm)

Fu(Υ(tn))
e−u(Υ(tn))e−u(x) max{Υ(tn)− x , 0}

]
.

One can show that
1 CDG∗(u) = [{R1

m}M
m=1, ..., {RN

m}M
m=1] := R(u)

2 Let R(u) := DG(u)CDG∗(u). Then [R(u)]ij =
〈
C−1/2[R(u)]i , C−1/2[R(u)]j

〉
X
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Experimental Setup
Physical conditions
Constants: pI = 2, p0 = 1, D∗ = 1,Observation times: (t1, t2, t3, t4, t5) = (0.02, 0.06, 0.14, 0.24, 0.36).
The Prior
u ∼ N(0, C) where Ch =

∫ D∗

0 c(x , x ′)h(x ′)dx ′ with
c(x , x ′) = σ2 21−ν

Γ(ν)

(
|x − x ′|

l

)ν

Kν

(
|x − x ′|

l

)
, σ2 = 0.5, l = 0.1, ν = 1.5. (18)

The Data
Assume that utrue ∼ P(u) and that data are generated by

y = G(utrue) + N(0,Σ), (19)
where Σii = (0.01[G(utrue)]i)

2, i.e. 1% of noise-free observations.
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Example of LMAP
Define µi = P(u|y (i)), where y (i) is all data collected up to time ti .
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Figure: Domain equipped with M = 15 sensors. True permeability and true front location in red. Posterior mean is dashedblack, along with 50% and 95% uncertainty bands.
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Comparison
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Define relative error by:
E(·)5 =

∥ū(·)
5 − ūMCMC

5 ∥X

∥ūMCMC
5 ∥X

, S(·)5 =
∥σ(·)

5 − σMCMC
5 ∥X

∥σMCMC
5 ∥X

. (20)
Algorithm E(·)

5 S(·)
5 Multiprocessing Computation timepcn-MCMC - - ✘ 9.186 hrsEKI 0.06199 0.09017 ✓ 22.29 minsRML 0.08621 0.2146 ✓ 30.10 minsLMAP 0.05366 0.1774 ✘ 7.240 secs

Table: Results for each method.
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Conclusion
Conclusion

▶ LMAP is extremely fast, but requires thorough knowledge of G and DG
▶ Gaussian approximations are reasonably accurate
▶ Representer theory helped to find the adjoint DG∗

Further work
▶ Addressing the inverse problem when no analytical solution exists
▶ Replacing G with surrogate models
▶ Apply LMAP methodology to 2D problem

AcknowledgementsThis work was supported by the Engineering and Physical Sciences ResearchCouncil, UK [grant number EP/P006701/1]; through the EPSRC Future CompositesManufacturing Research Hub.
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Sensor Density
μ1, M=5 μ2, M=5 μ3, M=5 μ4, M=5 μ5, M=5

μ1, M=10 μ2, M=10 μ3, M=10 μ4, M=10 μ5, M=10

μ1, M=20 μ2, M=20 μ3, M=20 μ4, M=20 μ5, M=20

μ1, M=50 μ2, M=50 μ3, M=50 μ4, M=50 μ5, M=50

Figure: LMAP algorithm for various sensor densities. Here, µi = P(u|y1, ..., yi )
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Comparison
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Levenberg-Marquardt
We have a (non-linear) optimisation problem of the form

umap = argmin
u∈X

1
2

∥∥∥Σ−1/2(y − G(u)
)∥∥∥2

Y
+

1
2

∥∥∥C−1/2(u − ū)
∥∥∥2

X
. (21)

By considering some uk in the neighbourhood of u,
1 linearise the forward map G(u) = G(uk ) + DG(uk )(u − uk )

2 add further regularisation Rk (u) =
αk
2 ∥C−1/2(u − uk )∥2

X

The (now) quadratic problem has iterative solution:
Levenberg-Marquardt algorithm
uk+1 = uk +

ū − uk

1 + αk
+ h, (22)

h = CDG∗(uk )
[
DG(uk )CDG∗(uk ) + (1 + αk )Σ

]−1
(

y − G(uk )−
DG(uk )(ū − uk )

1 + αk

)
.

where u0 = ū and αk → 0 according to [19].
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Further work details
Constrain the (regularised) optimisation problem with the forward problem:

L =
1
2

∥∥∥Σ−1/2(y − G(u)
)∥∥∥2

Y
+

1
2

∥∥∥C−1/2(u − ū)
∥∥∥2

X
+

αk

2

∥∥∥C−1/2(u − uk )
∥∥∥2

X
(23)

−
∫ T

0

∫ Υ(t)

0

d
dx

[
eu(x) dp

dx
(x , t)

]
λ(x , t)dxdt +

∫ T

0
[p(0, t)− pI ]α1(t)dt (24)

+

∫ T

0

[dΥ
dt

(t) +
1
µϕ

eu(Υ(t)) dp
dx

(Υ(t), t)
]
κ(t)dt +

∫ T

0
[p(Υ(t), t)− p0]α2(t)dt (25)

+

∫ L

0
[p(x , 0)− p0]α3(x)dx . (26)

Linearise the non-linear terms and take derivatives in each direction to get
1 a set of state equations for (DΥ(t)h,Dp(x , t)h)
2 a set of adjoint equations for (κ, λ)
3 an update equation for uk → uk+1 which relies on the solutions to the aboveequations

Upon admitting the analytical solution at the last step, the update for uk → uk+1leads to the exact Levenberg-Marquardt algorithm on slide 12.
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Algorithms

Figure: pcn-MCMC algorithm [15, 16]

Figure: RML algorithm [15] Figure: EKI algorithm [21]
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2D Problem

Figure: 2D forward problem [17]
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