Bayesian Inversion in Resin Transfer Moulding

Michael Causon

University of Nottingham

Joint work with: M. Tretyakov, M. Iglesias, A. Endruweit, M. Matveev

UCL May 21, 2023

Overview

- Resin Transfer Moulding (RTM)
- 2 The 1D Forward Problem
- The Inverse Problem
- Results
- Conclusion

Resin Transfer Moulding (RTM)

Uses of RTM: aerospace, automotive and marine industries.

Features: lightweight, high relative strength, form complex shapes, durable.

Figure: (Left to right, top to bottom) Composition of Boeing 787 [1], Formula 1 car [2], rowing boat [3], boat propeller [4], wind turbine rotator blade [5], car wing mirror [6].

The RTM Process

RTM uses 2 materials: a fibre-reinforced preform and liquid resin.

Figure: (a) Carbon fibre preform [7]

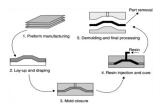


Figure: (b) RTM schematic [8]

Figure: (c) Finished composite part [9]

The RTM Process

RTM uses 2 materials: a fibre-reinforced preform and liquid resin.

Figure: (a) Carbon fibre preform [7]

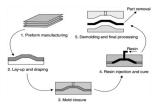


Figure: (b) RTM schematic [8]

Figure: (c) Finished composite part [9]

5/28

Motivation

Variations in permeability

Inhomogeneous resin flow

Variations in mechanical properties of part

Part discarded upon testing

Aims

Inverse problem: find (log-)permeability using pressure data recorded during injection to:

- aid non-destructive evaluation
- support the use of active control RTM

We emphasize the importance of **speed**.

Overview

- Resin Transfer Moulding (RTM)
- 2 The 1D Forward Problem
- The Inverse Problem
- Results
- Conclusion

Solution in 1D [10, 11, 12]

Let $u \in X \equiv L^2([0, D^*])$. Define $F_u(x) := \int_0^x e^{-u(z)} dz$ and $W_u(x) := \int_0^x F_u(\xi) d\xi$.

$$\Upsilon_u(t) = W_u^{-1} \left(\frac{\rho_l - \rho_0}{\mu \phi} t \right), \tag{1}$$

$$p_{u}(x,t) = \begin{cases} p_{l} - (p_{l} - p_{0}) \frac{F_{u}(x)}{F_{u}(\Upsilon_{u}(t))}, & x \in [0, \Upsilon_{u}(t)), \\ p_{0}, & x \in [\Upsilon_{u}(t), D^{*}]. \end{cases}$$
(2)

Fréchet derivative of the forward problem

For $0 \le x \le \Upsilon(t)$, the Frechet derivative of (Υ, p) w.r.t u is given by:

$$D\Upsilon_{u}(t)h = \frac{\int_{0}^{\Upsilon(t)} \int_{0}^{\xi} e^{-u(z)} h(z) dz d\xi}{F_{u}(\Upsilon(t))},$$
(3)

$$Dp_{u}(x,t)h = \frac{(p_{l} - p_{0})}{F_{u}(\Upsilon(t))^{2}} \Big[F_{u}(\Upsilon(t)) \int_{0}^{x} e^{-u(z)} h(z) dz - F_{u}(x) \int_{0}^{\Upsilon(t)} e^{-u(z)} h(z) dz \Big]$$

+
$$F_u(x)e^{-u(\Upsilon(t))}D\Upsilon_u(t)h$$
. (4)

7/28

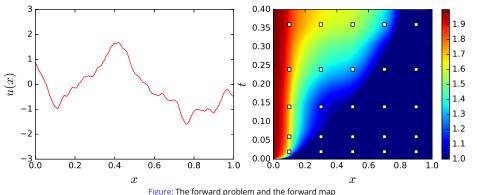
Michael Causon Bayesian Inversion in RTM May 21, 2023

The Forward Map

At N times $0 < t_1 < ... < t_N < \tau^*$, suppose M sensors are used to record resin pressure. Let $Y \equiv \mathbb{R}^{NM}$. Define the **forward map** $\mathcal{G}: (X, \langle \cdot, \cdot \rangle_X) \to (Y, \langle \cdot, \cdot \rangle_Y)$ by

$$G(u) = \left[\left\{ p_u(x_m, t_1) \right\}_{m=1}^M, ..., \left\{ p_u(x_m, t_N) \right\}_{m=1}^M \right]^T, \quad u \in X.$$
 (5)

Example: let M = N = 5.



Michael Causon Bayesian Inversion in RTM

Overview

- Resin Transfer Moulding (RTM)
- 2 The 1D Forward Problem
- The Inverse Problem
- 4 Results
- Conclusion

The Inverse Problem

Estimate $u \in X$ in the expression

$$y = \mathcal{G}(u) + \eta, \tag{6}$$

10/28

where

- $\mathcal{G}: (X, \langle \cdot, \cdot \rangle_X) \to (Y, \langle \cdot, \cdot \rangle_Y)$ is the forward map
- $y \in Y$ are measurements of the system
- $\eta \in Y$ is random measurement noise

The Bayesian approach

Assume that both u and η are Gaussian random variables/fields:

- **1** $u \sim N(\bar{u}, C)$, where C arises from the Matérn [14] covariance function
- ② $\eta \sim N(0,\Sigma) \implies y|u \sim N(\mathcal{G}(u),\Sigma)$, where Σ is given and diagonal

Using Bayes' rule $\mathbb{P}(u|y) \propto \mathbb{P}(u)\mathbb{P}(y|u)$, the posterior is given by

$$\mathbb{P}(u|y) \propto \exp\left(-\frac{1}{2} \left\| \Sigma^{-1/2} (y - \mathcal{G}(u)) \right\|_{Y}^{2} - \frac{1}{2} \left\| \mathcal{C}^{-1/2} (u - \bar{u}) \right\|_{X}^{2} \right). \tag{7}$$

Sampling from the Posterior

Case study: \mathcal{G} is linear, i.e. $\mathcal{G}(u) = \mathcal{G}u$

Recall $u \sim N(\bar{u}, \mathcal{C})$ and $\eta \sim N(0, \Sigma)$. The posterior is Gaussian $u|y \sim N(\hat{u}, \hat{\mathcal{C}})$ with

$$\hat{u} = \bar{u} + \mathcal{C}\mathcal{G}^* \Big[\mathcal{G}\mathcal{C}\mathcal{G}^* + \Sigma \Big]^{-1} (y - \mathcal{G}\bar{u}), \tag{8}$$

$$\hat{C} = C - CG^* \left[\mathcal{G}CG^* + \Sigma \right]^{-1} \mathcal{G}C \tag{9}$$

Case study: \mathcal{G} is non-linear

No such solution exists. We must use Markov chain Monte Carlo (MCMC) methods.

Linearisation around the maximum a-posteriori (LMAP) estimate

Suppose $\mathcal{G}(u) \approx \mathcal{G}(u_{map}) + D\mathcal{G}(u_{map})(u - u_{map})$. Approximate $u \approx \textit{N}(u_{map}, \mathcal{C}_{map})$ with

$$u_{map} = \operatorname{argmin}_{u \in X} \frac{1}{2} \left\| \Sigma^{-1/2} (y - \mathcal{G}(u)) \right\|_{Y}^{2} + \frac{1}{2} \left\| \mathcal{C}^{-1/2} (u - \bar{u}) \right\|_{X}^{2}, \tag{10}$$

$$C_{map} = C - CDG^*(u_{map}) \left[DG(u_{map})CDG^*(u_{map}) + \Sigma \right]^{-1} DG(u_{map})C. \tag{11}$$

Michael Causon Bayesian Inversion in RTM May 21, 2023 11/28

Linearisation around the maximum a-posteriori (LMAP) estimate

For non-linear \mathcal{G} , the approximate posterior is $u|y \approx N(u_{map}, \mathcal{C}_{map})$ where

$$u_{map} = \underset{u \in X}{\operatorname{argmin}} \frac{1}{2} \left\| \Sigma^{-1/2} (y - \mathcal{G}(u)) \right\|_{Y}^{2} + \frac{1}{2} \left\| \mathcal{C}^{-1/2} (u - \bar{u}) \right\|_{X}^{2}, \tag{12}$$

$$C_{map} = C - CDG^*(u_{map}) \left[DG(u_{map})CDG^*(u_{map}) + \Sigma \right]^{-1} DG(u_{map})C.$$
 (13)

Here, $D\mathcal{G}^*(u): Y \to X$ is the adjoint of $D\mathcal{G}(u): X \to Y$ defined by

$$\langle \mathcal{DG}(u)h, v \rangle_{Y} = \langle h, \mathcal{DG}^{*}(u)v \rangle_{X}, \quad \forall h \in X, \ v \in Y.$$
 (14)

12/28

Levenberg-Marquardt algorithm ($u \rightarrow u_{map}$)

Define $A_k := D\mathcal{G}(u_k)$ and $A_k^* := D\mathcal{G}^*(u_k)$. Let $u_0 = \bar{u}$ and $\alpha_k \to 0$ according to [19].

$$u_{k+1} = u_k + \frac{\bar{u} - u_k}{1 + \alpha_k} + CA_k^* \Big[A_k CA_k^* + (1 + \alpha_k) \Sigma \Big]^{-1} \left(y - \mathcal{G}(u_k) - \frac{A_k(\bar{u} - u_k)}{1 + \alpha_k} \right). \quad (15)$$

Michael Causon Bayesian Inversion in RTM May 21, 2023

The Adjoint

Note
$$DG(u)h = \left[\left\{ Dp_u(x_m, t_1)h \right\}_{m=1}^M, ..., \left\{ Dp_u(x_m, t_N)h \right\}_{m=1}^M \right]^T$$
.

Riesz Representation Theorem [20]

Since $D\mathcal{G}(u): X \to Y$ is linear and bounded, then $\exists R_m^n(u) \in X$ such that $\forall h \in X$

$$[D\mathcal{G}(u)h]_i = Dp(x_m, t_n)h = \langle \mathcal{C}^{-1/2}R_m^n(u), \mathcal{C}^{-1/2}h\rangle_X.$$
(16)

13/28

The Representers

The representers are given by $R_m^n = H(\Upsilon(t_n) - x_m)\mathcal{C}Q_m^n$ where

$$Q_{m}^{n}[u](x) = \frac{(p_{l} - p_{0})}{F_{u}(\Upsilon(t_{n}))^{2}} \Big[F_{u}(\Upsilon(t_{n})) H(x_{m} - x) e^{-u(x)} - F_{u}(x_{m}) H(\Upsilon(t_{n}) - x) e^{-u(x)} + \frac{F_{u}(x_{m})}{F_{u}(\Upsilon(t_{n}))} e^{-u(\Upsilon(t_{n}))} e^{-u(x)} \max{\{\Upsilon(t_{n}) - x, 0\}} \Big].$$
(17)

One can show that

2 Let
$$\mathcal{R}(u) := D\mathcal{G}(u)\mathcal{C}D\mathcal{G}^*(u)$$
. Then $[\mathcal{R}(u)]_{ij} = \langle \mathcal{C}^{-1/2}[\mathbf{R}(u)]_i, \mathcal{C}^{-1/2}[\mathbf{R}(u)]_j \rangle_X$

Michael Causon Bayesian Inversion in RTM May 21, 2023

Overview

- Resin Transfer Moulding (RTM)
- 2 The 1D Forward Problem
- The Inverse Problem
- Results
- Conclusion

Physical conditions

Constants: $p_1 = 2$, $p_0 = 1$, $D^* = 1$, Observation times: $(t_1, t_2, t_3, t_4, t_5) = (0.02, 0.06, 0.14, 0.24, 0.36)$.

The Prior

 $u \sim N(0, \mathcal{C})$ where $\mathcal{C}h = \int_0^{D^*} c(x, x')h(x')dx'$ with

$$c(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{|x-x'|}{I} \right)^{\nu} K_{\nu} \left(\frac{|x-x'|}{I} \right), \quad \sigma^2 = 0.5, \quad I = 0.1, \quad \nu = 1.5.$$
 (18)

The Data

Assume that $u_{true} \sim \mathbb{P}(u)$ and that data are generated by

$$y = \mathcal{G}(u_{true}) + N(0, \Sigma), \tag{19}$$

where $\Sigma_{ii} = (0.01[\mathcal{G}(u_{true})]_i)^2$, i.e. 1% of noise-free observations.

Michael Causon Bayesian Inversion in RTM

Example of LMAP

Define $\mu_i = \mathbb{P}(u|y^{(i)})$, where $y^{(i)}$ is all data collected up to time t_i .

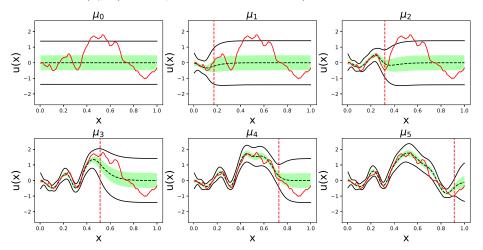
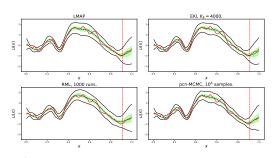


Figure: Domain equipped with M=15 sensors. True permeability and true front location in red. Posterior mean is dashed black, along with 50% and 95% uncertainty bands.

Comparison



Define relative error by:

$$\mathbf{E}_{5}^{(\cdot)} = \frac{\|\bar{u}_{5}^{(\cdot)} - \bar{u}_{5}^{MCMC}\|_{X}}{\|\bar{u}_{5}^{MCMC}\|_{X}}, \quad \mathbf{S}_{5}^{(\cdot)} = \frac{\|\sigma_{5}^{(\cdot)} - \sigma_{5}^{MCMC}\|_{X}}{\|\sigma_{5}^{MCMC}\|_{X}}.$$
 (20)

17/28

Algorithm	$\mathbf{E}_{5}^{(\cdot)}$	$\mathbf{S}_{5}^{(\cdot)}$	Multiprocessing	Computation time
pcn-MCMC	-	-	X	9.186 hrs
EKI	0.06199	0.09017	✓	22.29 mins
RML	0.08621	0.2146	✓	30.10 mins
LMAP	0.05366	0.1774	×	7.240 secs

Table: Results for each method.

Michael Causon Bayesian Inversion in RTM May 21, 2023

Overview

- Resin Transfer Moulding (RTM)
- 2 The 1D Forward Problem
- The Inverse Problem
- Results
- Conclusion

Conclusion

Conclusion

- ightharpoonup LMAP is extremely fast, but requires thorough knowledge of ${\cal G}$ and ${\it D}{\cal G}$
- Gaussian approximations are reasonably accurate
- ▶ Representer theory helped to find the adjoint DG^*

Further work

- Addressing the inverse problem when no analytical solution exists
- \triangleright Replacing \mathcal{G} with surrogate models
- Apply LMAP methodology to 2D problem

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council, UK [grant number EP/P006701/1]; through the EPSRC Future Composites Manufacturing Research Hub.

References

[1] Boeing (2006)

Boeing 787 from the ground up *AERO 04*, 17 – 23.

[2] Formula 1 (2023)

FIRST LOOK: Alfa Romeo show off 2023 C43 F1 car with striking new livery

[3] SL Racing (2021)

Built to win

Quality in every detail

[4] Fiberdyne (2019)

Carbon fiber marine propeller

[5] Composites World (2021)

Customized resin flow mesh products save time, cost for wind turbine blade manufacturers

[6] Composites World (2019)

Would you like carbon fiber with that car?

[7] SGL Carbon (2023)

SIGRATEX® non-crimp fabrics, woven fabrics, non-wovens, and stacks The Drapables

[8] E. Sozer, P. Simacek, and S. Advani (2012)

Resin transfer molding (RTM) in polymer matrix composites

Manufacturing techniques for polymer matrix composites (PMCs), 245 – 309

Woodhead Publishing

References (cont.)

[9] ThoughCo. (2019)

Science

Carbon Fiber Manufacturing Companies

[10] M. Park, and M.V. Tretyakov (2017)

Stochastic resin transfer molding process

SIAM/ASA Journal on Uncertainty Quantification 5.1, 1110 – 1135

[11] D.M. Tartakovsky and C.L. Winter (2001)

Dynamics of free surfaces in random porous media SIAM Journal on Applied Mathematics 61, 1857 – 1876

[12] S.G. Advani and E.M. Sozer (2011)

Process modeling in composites manufacturing CRC Press

[13] M. Fréchet (1911)

Sur la notion de différentielle

Comptes rendus de l'Académie des Sciences, 845 - 847

[14] B. Matérn (1986)

Spatial variation, vol. 36 Springer

[15] M. Iglesias, K. Law, and A. Stuart (2013)

Evaluation of Gaussian approximations for data assimilation in reservoir models Computational Geosciences, 17, 851 – 885

References (cont.)

[16] S. Cotter, G. Roberts, A. Stuart, and D. White (2013)

MCMC methods for functions: modifying old algorithms to make them faster *Statistical Science*, *28*, 424 – 446

[17] M. Iglesias, M. Park, and M. V. Tretyakov (2018)

Bayesian inversion in resin transfer molding Inverse Problems, 34, 424 – 446

[18] M. Matveev, A. Endruweit, A. Long, M. Iglesias, and M. Tretyakov (2021)

Bayesian inversion algorithm for estimating local variations in permeability and porosity of reinforcements using experimental data

Composites Part A: Applied Science and Manufacturing, 143

[19] A. Reynolds, D. Oliver, and N. Liu (2008)

Inverse theory for petroleum reservoir characterization and history matching Cambridge University Press, 1 ed.

[20] K. Bryan (2008)

The Riesz representation theorem Mathematical Analysis - The Johns Hopkins University

[21] M. Iglesias and Y. Yang (2021)

Adaptive regularisation for ensemble Kalman inversion *Inverse Problems* 37.2

Sensor Density

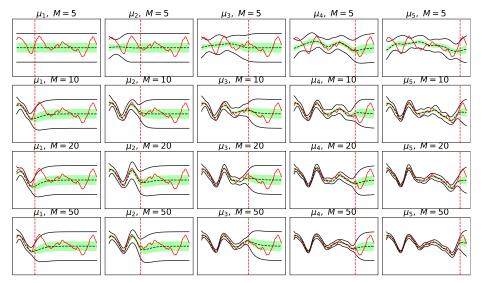
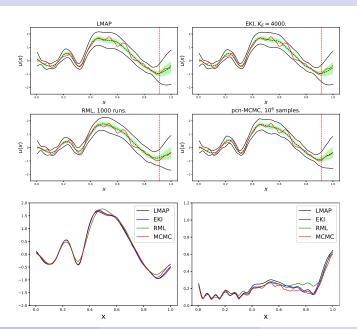


Figure: LMAP algorithm for various sensor densities. Here, $\mu_i = \mathbb{P}(u|y_1,...,y_i)$



Levenberg-Marquardt

We have a (non-linear) optimisation problem of the form

$$u_{map} = \underset{u \in X}{\operatorname{argmin}} \frac{1}{2} \left\| \Sigma^{-1/2} (y - \mathcal{G}(u)) \right\|_{Y}^{2} + \frac{1}{2} \left\| \mathcal{C}^{-1/2} (u - \bar{u}) \right\|_{X}^{2}. \tag{21}$$

By considering some u_k in the neighbourhood of u,

- linearise the forward map $\mathcal{G}(u) = \mathcal{G}(u_k) + D\mathcal{G}(u_k)(u u_k)$
- ② add further regularisation $R_k(u) = \frac{\alpha_k}{2} \|\mathcal{C}^{-1/2}(u u_k)\|_X^2$

The (now) quadratic problem has iterative solution:

Levenberg-Marquardt algorithm

$$u_{k+1} = u_k + \frac{\bar{u} - u_k}{1 + \alpha_k} + h,$$

$$h = \mathcal{C}D\mathcal{G}^*(u_k) \Big[D\mathcal{G}(u_k) \mathcal{C}D\mathcal{G}^*(u_k) + (1 + \alpha_k) \Sigma \Big]^{-1} \left(y - \mathcal{G}(u_k) - \frac{D\mathcal{G}(u_k)(\bar{u} - u_k)}{1 + \alpha_k} \right).$$
(22)

where $u_0 = \bar{u}$ and $\alpha_k \to 0$ according to [19].

Further work details

Constrain the (regularised) optimisation problem with the forward problem:

$$\mathcal{L} = \frac{1}{2} \left\| \Sigma^{-1/2} (y - \mathcal{G}(u)) \right\|_{Y}^{2} + \frac{1}{2} \left\| \mathcal{C}^{-1/2} (u - \bar{u}) \right\|_{X}^{2} + \frac{\alpha_{k}}{2} \left\| \mathcal{C}^{-1/2} (u - u_{k}) \right\|_{X}^{2}$$
(23)

$$-\int_0^T \int_0^{\Upsilon(t)} \frac{d}{dx} \left[e^{u(x)} \frac{dp}{dx}(x,t) \right] \frac{\lambda(x,t)}{\lambda(x,t)} dx dt + \int_0^T [p(0,t) - p_l] \frac{\alpha_1(t)}{\lambda(t)} dt$$
 (24)

$$+\int_{0}^{T} \left[\frac{d\Upsilon}{dt}(t) + \frac{1}{\mu\phi} e^{u(\Upsilon(t))} \frac{dp}{dx} (\Upsilon(t), t) \right] \kappa(t) dt + \int_{0}^{T} [p(\Upsilon(t), t) - p_0] \alpha_2(t) dt$$
 (25)

$$+ \int_0^L [p(x,0) - p_0] \alpha_3(x) dx.$$
 (26)

Linearise the non-linear terms and take derivatives in each direction to get

- a set of state equations for $(D\Upsilon(t)h, Dp(x, t)h)$
- 2 a set of adjoint equations for (κ, λ)
- ② an update equation for $u_k \to u_{k+1}$ which relies on the solutions to the above equations

Upon admitting the analytical solution at the last step, the update for $u_k \to u_{k+1}$ leads to the exact Levenberg-Marquardt algorithm on slide 12.

Algorithms

Algorithm 1 (pCN-MCMC) Take $u^{(0)} \sim N(\overline{u}, C)$, n = 1, and $\beta \in (0, 1)$. Then,

(1) pcN proposal. Generate u from

$$u=\sqrt{1-\beta^2}u^{(n)}+(1-\sqrt{1-\beta^2})\overline{u}+\beta\xi, \qquad \text{with } \ \xi\sim N(0,C) \eqno(22)$$

(2) Set $u^{n+1} = u$ with probability $a(u^n, u)$ and $u^{n+1} = u^n$ with probability $1 - a(u^n, u)$, where

$$a(u,v) = \min \{1, \exp(\Phi(u,y) - \Phi(v,y))\}$$
 (23)

(3) $n \mapsto n+1$ and repeat.

Figure: pcn-MCMC algorithm [15, 16]

Algorithm 3 (RML) For $j \in \{1, ..., N_e\}$

- (1) Generate $u^{(j)} \sim N(\overline{u}, C)$
- (2) Define v^(j) = v + n^(j) with n^(j) ~ N(0,Γ).
- (3) Compute

$$u_{RML}^{(j)} = \operatorname{argmin}_{u} \left\{ \Phi(u, y^{(j)}) + \frac{1}{2} ||u - u^{(j)}||_{C}^{2} \right\}.$$
 (27)

Figure: RML algorithm [15]

Algorithm 1. Generic EKI (with perturbed observations).

Input:

- {u_n^(j)}^J_{i=1}: Initial ensemble of inputs.
 - Measurements ν and covariance of measurement errors Γ.

Set $\{u_n^{(j)}\}_{j=1}^J=\{u_0^{(j)}\}_{j=1}^J$ and $\theta=0$ while $\theta<1$ do

- (1) Compute $G_n^{(j)} = G(u_n^{(j)}), \quad j \in \{1, ..., J\}$
- (2) Compute regularisation parameter α_n and check for convergence criteria if converged then set $\theta = 1$ and $n^* = n$
- (3) Update each ensemble member

$$u_{n+1}^{(j)} = u_n^{(j)} + C_n^{uG}(C_n^{GG} + \alpha_n \Gamma)^{-1}(y + \sqrt{\alpha_n}\xi_n - G_n^{(j)}), \quad j \in \{1, ..., J\}$$

where

$$C_n^{\mathcal{GG}} \equiv \frac{1}{J-1} \sum_{j=1}^{J} (\mathcal{G}_n^{(j)} - \overline{\mathcal{G}}_n) \otimes (\mathcal{G}_n^{(j)} - \overline{\mathcal{G}}_n)$$
 (16)

$$C_n^{u\mathcal{G}} \equiv \frac{1}{J-1} \sum_{i=1}^{J} (u_n^{(j)} - \overline{u}_n) \otimes (\mathcal{G}_n^{(j)} - \overline{\mathcal{G}}_n)$$
 (17)

with
$$\overline{u}_n \equiv \frac{1}{J} \sum_{j=1}^J u_n^{(j)}$$
 and $\overline{\mathcal{G}}_n \equiv \frac{1}{J} \sum_{j=1}^J \mathcal{G}_n^{(j)}$.

 $n \leftarrow n + 1$

output: $\{u_{n^*}^{(j)}\}_{j=1}^{J}$ converged ensemble

Figure: EKI algorithm [21]

2D Problem

The forward problem for the pressure of resin p(t,x) consists of the conservation of mass

$$\nabla \cdot \mathbf{v} = 0$$
, $x \in D(t)$, $t > 0$, (1)

where the flux $\mathbf{v}(x,t)$ is given by Darcy's law

$$\mathbf{v}(x,t) = -\frac{\kappa(x)}{\mu} \nabla p(x,t) \tag{2}$$

with the following initial and boundary conditions

$$p(x,t) = p_I, x \in \partial D_I, t \geqslant 0,$$
 (3)

$$\nabla p(x,t) \cdot \mathbf{n}(x) = 0, \ x \in \partial D_N, \ t \geqslant 0,$$
 (4)

$$V(x,t) = -\frac{\kappa(x)}{\mu\varphi} \nabla p(x,t) \cdot \mathbf{n}(x,t), \ x \in \Upsilon(t), \ t \geqslant 0, \tag{5}$$

$$p(x,t) = p_0, x \in \Upsilon(t), t > 0,$$
 (6)

$$p(x,t) = p_0, x \in \partial D_O, t > 0, \tag{7}$$

$$p(x,0) = p_0, x \in D^*,$$
 (8)

$$\Upsilon(0) = \partial D_I$$
. (9)

Figure: 2D forward problem [17]