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Resin Transfer Moulding (RTM)

Uses of RTM: aerospace, automotive and marine industries.
Features: lightweight, high relative strength, form complex shapes, durable.
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Figure: (Left to right, top to bottom) Composition of Boeing 787 [1], Formula 1 car [2], rowing boat [3], boat propeller [4],
wind turbine rotator blade [5], car wing mirror [6].
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The RTM Process

RTM uses 2 materials: a fibre-reinforced preform and liquid resin.
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Figure: (a) Carbon fibre preform [7] Figure: (b) RTM schematic [8]
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Figure: (c) Finished composite part [9]
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The RTM Process

RTM uses 2 materials: a fibre-reinforced preform and liquid resin.
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Figure: (a) Carbon fibre preform [7] Figure: (b) RTM schematic [8] Figure: (c) Finished composite part [9]
Motivation Aims
Variations in permeability Inverse problem: find (log-)permeability
using pressure data recorded during
Inhomogeneous resin flow injection to:
o ) . @ aid non-destructive evaluation
Variations in mechanical o h £ acti |
properties of part support the use of active contro
RTM
Part discarded upon testing We emphasize the importance of speed.
v
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Darcy Flow in 1D

Solutionin 1D [10, 11, 12]

Let u € X = L3([0, D*]). Define Fu(x = Iy e Y@ dz and W,(x) := Jo Fu(€)de.
_ w1 (Pr— Po
Tu(t) = W, ( 0 t), (1)
u(X)
polx. 1) = pi = (P = Po) miys X €0, Tu(1)), o
Po, X € [Tu(t)7 D*] )
Fréchet derivative of the forward problem |
For 0 < x < T(t), the Frechet derivative of (T, p) w.r.t u is given by:
Jor© [ e h(z)dzde
DYu(t)h = , 3
® F (m)) ©
Dpu(x, t)h = ( ( t))2 Fu (T(t) )/ z)dz — Fu( x)/ U h(z)dz
+ Fu(x) DYu(t)h]. @)

Michael Causon Bayesian Inversion in RTM May 21, 2023

7128



The Forward Map

At Ntimes0 < t < .. < Iy < 7%, suppose M sensors are used to record resin
pressure. Let Y = R™. Define the forward map G : (X, (, ~>x) = (Y, {,)y) by

o) = [{ptm )} Aptm )} | vex. (5)

Example: let M = N =5.
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Figure: The forward problem and the forward map
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The Inverse Problem

Estimate u € X in the expression

y=6(u)+n, (6)
where
@ G:(X,()x)— (Y,{, )y)isthe forward map
@ y € Y are measurements of the system
@ 1 € Y israndom measurement noise

The Bayesian approach

Assume that both u and n are Gaussian random variables/fields:
@ u~ N(t,C), where C arises from the Matérn [14] covariance function
Q@ n~N(,X) = ylu~ N(G(u),X), where X is given and diagonal

Using Bayes' rule P(uly) o« P(u)P(y|u), the posterior is given by

—

r oo (- 0 -c - He o) o
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Sampling from the Posterior

Case study: G is linear, i.e. G(u) = Gu
Recall u ~ N(&,C) and n ~ N(0, £). The posterior is Gaussian uly ~ N(&,C) with
=1
b=u+cgr[geg” +3| (v - o), ®)

¢=c-cg'[oeq +x] g ©)

v

Case study: G is non-linear

No such solution exists. We must use Markov chain Monte Carlo (MCMC) methods.

Linearisation around the maximum a-posteriori (LMAP) estimate
Suppose G(U) ~ G(Umnap) + DG(Umap)(U — Umap). Approximate u ~ N(Umap, Cmap) With

— o Vlis—1/20, 2 Na=1r2p,, =P
umap_arger?(lnzHZ (v g(u))Hy—i—zHC (u u)'x7 (10)
—1
Cmap = C — CDG" (Umap) [Dg(umap)cog*(umap) n z] DG (Umap)C. 1)

v
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LMAP

Linearisation around the maximum a-posteriori (LMAP) estimate
For non-linear G, the approximate posterior is uly ~ N(Umap, Cmap) Where

2

Uy — arger?(in%HZ_”z (y — 6(u)) Hi 4 %Hc—vz(u = L_l)’ X (12)

—1
Cmap = C — CDG" (Umap) [Dg(umap)cog*(umap) 4 z] DG (Umap)C. (13)

Here, DG*(u) : Y — Xis the adjoint of DG(u) : X — Y defined by
(DG(u)h,v)y = (h,DG*(u)v)x, Yhe X, veY. (14)

Levenberg-Marquardt algorithm (u — Umap)
Define Ax := DG (ux) and A; := DG*(uk). Let up = U and ax — 0 according to [19].

l_l—Uk

Ukt = U]
k+1 k+1+ak

+ CAx [AkCAZ +(1+ Oék)Z] - (y —G(uk) — w> (15)
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The Adjoint
Note DG(u)h = [{Dpu(xm, t)R} 1, .. {Dpulxm, tN)h}HT.

Riesz Representation Theorem [20]
Since DG(u) : X — Y is linear and bounded, then 3R}, (u) € X such that Vh € X

[DG(u)h); = Dp(xm, t))h = (€2 R (u),C~"/?h)x. (16)

The Representers
The representers are given by Ry, = H(T(t,) — xm)CQp, where

Qhlul(x) = F(u(“r(tp;)) [Fu(’T‘(tn))H(xm— x)e ™" — Fu(xm)H(T(t) — x)e™ "% (17)

Fu(Xm)

TR

g~ U(T(t)) g=u() max{T(t) — X, 0}] :

One can show that
@ ¢DG*(u) = [{Rh}m=1, - {Rh}m=1] := R(u)
Q@ Let R(u) := DG(u)CDG*(u). Then [R(u)]; = (C~'2[R(u)];,C~2[R(u)];)
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Experimental Setup

Physical conditions

Constants: p;=2,p0 =1, D* =1,
Observation times: (t, &, t3, t4, &) = (0.02,0.06,0.14,0.24,0.36).

v
The Prior
u~ N(0,C) where Ch= [\*" c(x, x')h(x")dx’ with
o(x,x') = 227 (x| UK X=X1) 205 1201, v=15 (18
s —O’r(y) ] v ] , 00 =095, =01, v=1.5.
v
The Data |
Assume that ume ~ P(u) and that data are generated by
y = g(u[fue) + N(07 2)7 (1 9)
where ¥; = (0.01[G(ume)]i)?, i.e. 1% of noise-free observations. )
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Example of LMAP

Define u; = P(u|y"), where y( is all data collected up to time t.
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Figure: Domain equipped with M = 15 sensors. True permeability and true front location in red. Posterior mean is dashed

black, along with 50% and 95% uncertainty bands.
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Comparison

EKI, Ke = 4000

ulx)

ulx)

ulx)

ulx)

Define relative error by:

(20)

g0 18— T oy flog) — oB M
° a5 MClx llog™ 1 x
Algorithm Eé‘) Sg') Multiprocessing | Computation time
pcn-MCMC - - X 9.186 hrs
EKI 0.06199 | 0.09017 v 22.29 mins
RML 0.08621 | 0.2146 v 30.10 mins
LMAP 0.05366 | 0.1774 X 7.240 secs

Michael Causon

Table: Results for each method.
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Conclusion

o Conclusion

» LMAP is extremely fast, but requires thorough knowledge of G and DG
» Gaussian approximations are reasonably accurate
» Representer theory helped to find the adjoint DG*

o Further work

» Addressing the inverse problem when no analytical solution exists
» Replacing G with surrogate models
» Apply LMAP methodology to 2D problem
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Sensor Density
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Figure: LMAP algorithm for various sensor densities. Here, p1; = P(ulyq, ..., ¥;)
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Comparison

EKI, Ke=4000.
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Levenberg-Marquardt

We have a (non-linear) optimisation problem of the form

Umap = ar§€r§1(in%HZ’1/2 (y — G(u)) Hi + %HC*‘/Z(U — U)Hi. 21

By considering some uy in the neighbourhood of v,
@ linearise the forward map G(u) = G(uk) + DG (uk)(u — uk)
@ add further regularisation Rx(u) = %[IC~"2(u — uk) %

The (now) quadratic problem has iterative solution:

Levenberg-Marquardt algorithm

D*Uk
1+ ak

h = CDG" (ux) [Dg(uk)CDg*(uk) 1+ ak)Z] - <y — G(u) - Dg(“k)(‘_’—“k)> '

Uk+1 = Uk + + h, (22)

1+Oék

where uy = U and ax — 0 according to [19].
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Further work details

Constrain the (regularised) optimisation problem with the forward problem:

e S
/ / e (x 0] A(x, tyaxelt + / [0(0, 1) — pilo: ()t (24)

; /O [‘”(m75 TP (), )] syt + /0 P(T(), 1) — polea(t)at (25)
+ [ 1o060) - plasax (26)

Linearise the non-linear terms and take derivatives in each direction to get
@ a set of state equations for (DY (t)h, Dp(x, t)h)
@ a set of adjoint equations for (x, \)

© an update equation for ux — uk,+ which relies on the solutions to the above
equations

Upon admitting the analytical solution at the last step, the update for ux — Uk41
leads to the exact Levenberg-Marquardt algorithm on slide 12.
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Algorithms

Algorithm 1 (pCN-MCMC ) Take u®) ~ N(ii,C),n = 1, and € (0,1). Then,

(1) peN proposal. Generate u from

u=/1=B2u" +(1- /1= B+ BE,

with & ~N(0,C)

22)

(2) Set ™ = wwith probability a(u",u) and "' = u" with probability 1 —a(u",u),

where
a(u,v) = min { Lexp(@(u,y) — <D(v.y))}
(3) n+n+1and repeat.

Figure: pcn-MCMC algorithm [15, 16]

Algorithm 3 (RML) For j€ {1,..., Ne}

(1) Generate u") ~ N(u,C)
(2) Define ) =y+nU) withn')) ~ N(0,I").
(3) Compute

. 1 2
uly, = argmm,,{o(u. ¥+ 5l -WH;}'

Figure: RML algorithm [15]

Michael Causon
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Bayesian Inversion in RTM

Algorithm 1. Generic EKT (with perturbed observations).

Input:

1) {uf}7_,: Initial ensemble of inputs
2) Measurements y and covariance of measurement errors I'.
Set (u}y = (uf}oy and 0= 0
while § < 1 do
(1) Compute G = G(uf),  je{l,....J}
(2) Compute regularisation parameter a, and check for convergence criteria

if converged then
setf=1landn'=n
(3) Update each ensemble member

uldy = )+ CGOCF 4 0nl) Ny + Vs ~69), G € {L... T}
where
,
1209 -G (6 ~T) (15)
s
) —m) @ (G -0 (17)
=
with 7, = 3 7, ui and G = 1 27, 65
nentl
end
output: {u}], converged ensemble
Figure: EKI algorithm [21]
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2D Problem

The forward problem for the pressure of resin p(r,x) consists of the conservation of mass
Vev=0, xeD{).,r>0, 1)
where the flux v(x,7) is given by Darcy's law

Klx)

vx1) = —%Vp(.r.l) 2)

with the following initial and boundary conditions

plx.t) =pr. x€aDp, t 20, (3)
Uplx.t) n(x) =0, x € 0Dy, 120, “
V(e = —%vmx.n) “n(x ), x€ T, 130, )
plx.1) =po. x€ T(r), 1 >0, (6)
plx1) = po.x € 8Dg, 1 >0, (7)
plx,0) = pg, x€ D", (8)
T(0) = an,. ©)

Figure: 2D forward problem [17]
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