Undersampling Raster Scans in Spectromicroscopy for reduced dose and faster measurements

Oliver Townsend

Joint work with Silvia Gazzola (Bath), Sergey Dolgov (Bath), and Paul Quinn (Diamond Light Source)

May 22, 2023

Introduction •000

- 1 Introduction
- 2 Spectromicroscopy
- 3 Low Rank Model
- 4 Matrix Completion
- 5 Sparse Scanning in Spectromicroscopy

Diamond Light Source

0000

Figure 1: Aerial Picture of Diamond Light Source, Rutherford Appleton Laboratory

X-ray Spectromicroscopy

- Combination of Spectroscopy and Microscopy techniques.
- Beamline produced by 3rd or 4thgeneration synchrotron radiation sources.
- Scan over a 100×100 grid and at 150 energy levels roughly 1.5 million measurements
- Experiments take several hours, creating a bottleneck.

Proposed Solution

Undersample the measurements taken of a specimen and use numerical techniques to recover the missing entries.

Experiment Schematics

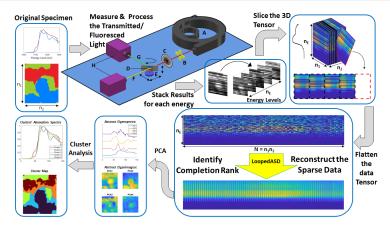


Figure 2: Schematics of Sparse Spectromicroscopy with real data. The original specimen contains a mixture of: FeO (blue region), Fe_2O_3 (red region), over a background (green region). Experimental setup: (A) - a x-ray light source, (B) - intensity of the incident beam is measured, (C) - the light is focused, (D) - specimen, (E) - specimen stage that can translate in 3D, (F) - transmitted flux, (G) - fluoresced flux, (H) - light intensity detectors.

- 1 Introduction
- 2 Spectromicroscopy
- 3 Low Rank Model
- 4 Matrix Completion
- 5 Sparse Scanning in Spectromicroscopy

X-ray Spectromicroscopy

- Measure the intensity of the: incident x-rays: $I^0(E)$, fluoresced x-rays: $I^f(E)$. From these we infer the absorption coefficient, $\mu(E)$.
- Photon energies are tuned to the atoms' Absorption Edge.
- Scan all pixels in grid by moving scanner in a Raster Pattern

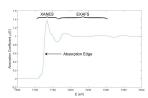


Figure 3: Absorption Coefficient of Hematite (Fe $_2$ O $_3$, Fe3+)

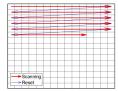


Figure 4: Scanner path for a Raster Scan

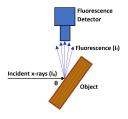
Storing the Data

Fluorescence Model:

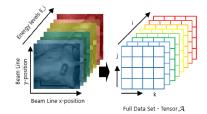
$$I^f(E) \propto I^0(E)\mu(E)t$$
.

We store the Optical Density in tensor $A \in \mathbb{R}^{n_E \times n_1 \times n_2}$. Each layer is a full spatial raster scan at a different energy level:

$$\mathcal{A}_{i,j,k} = \frac{I_{j,k}^f(E_i)}{I^0} = \mu(E_i)t_{j,k}.$$



(a) Fluorescence Geometry



(b) Storing each 2D spatial scan of data.

- 3 Low Rank Model
- Matrix Completion

- Let the specimen consist of *S* different materials.
- $\mu \in \mathbb{R}^{n_E \times S}$, $t \in \mathbb{R}^{S \times N}$: columns of μ are the absorption spectra, rows of t are the corresponding thickness maps.
- Then

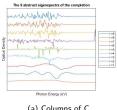
$$A_{ij} = \sum_{s=1}^{S} \mu_s(E_i) t_{sj} + \eta_{ij}, \qquad \eta \in \mathcal{N}(0, \delta^2 I).$$

- Apply PCA: $A = C \cdot R$, $C \in \mathbb{R}^{n_E \times n_E}$, $R \in \mathbb{R}^{n_E \times N}$.
- Columns of C are the abstract eigenspectra, rows of R are the corresponding eigenimages.

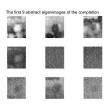
Choice of Low Rank

Compute **low rank** approximation A' = C'R', where C', R' are the first L columns, rows of C, R respectively.

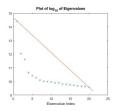
Set L at the elbow point (point of max curvature of the SVs of A). Use KNEEDLE algorithm - supports visual results from PCA.



(a) Columns of C



(b) Reshaped rows of R



(c) Illustration of Kneedle on DS1

Cluster Analysis

- Use kmeans to cluster the columns of R' in L-dimensional space.
- The centroid of each cluster approximates the absorption spectra of that material.

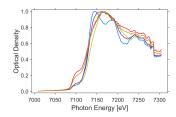
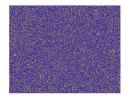


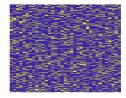
Figure 7: Cluster results of DS2 with L=5. Images produced using Mantis X-Ray.

- 4 Matrix Completion

Sampling Methods

- Sampling pattern, $\Omega \subset [n_E] \times [n_1 n_2]$. Undersampling ratio, $p = |\Omega|/n_E n_1 n_2$.
- **Bernoulli Method**: Each entry sampled i.i.d. with probability p.
- Raster Sampling: block entries in their (physical) rows for greater experimental efficiency.
- **Robust Raster Sampling**: Slightly reduce randomness to ensure no zero-rows or zero-columns can occur.





(b) Raster Sampling (p = 0.15)

Fixing the rank

Wish to solve:

$$\min_{X,Y} f(X,Y) \qquad f(X,Y) = \frac{1}{2} ||\mathcal{P}_{\Omega}(A) - \mathcal{P}_{\Omega}(XY)||_F^2.$$

Remain on the manifold of rank r matrices:

$$A = XY$$
, $A \in \mathbb{R}^{n_E \times N}$, $X \in \mathbb{R}^{n_E \times r}$, $Y \in \mathbb{R}^{r \times N}$

Drawback: r must be set as an input.

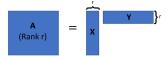


Figure 9: Illustration of X.Y decomposition

- Use low-rank matrix completion algorithm ASD (Alternating) Steepest Descent).
- \blacksquare For each iteration, fix one component and minimise f(X,Y)using steepest descent with exact line search.
- Alternate the fixed component between X and Y.

ASD - Algorithm

$$\begin{cases} \text{Fix } Y_i, \text{ compute } \nabla f_{Y_i}(X_i), \ \delta_{X_{i+1}} \\ X_{i+1} = X_i - \delta_{X_{i+1}} \nabla f_{Y_i}(X_i) \\ \text{Fix } X_{i+1}, \text{ compute } \nabla f_{X_i}(Y_i), \ \delta_{Y_i} \\ Y_{i+1} = Y_i - \delta_{Y_i} \nabla f_{X_i}(Y_i) \end{cases}$$

 $f_X(Y) = f(X, Y)$ for fixed X, $f_Y(X) = f(X, Y)$ for fixed Y, δ is the exact step size.

¹J. Tanner and K. Wei. "Low rank matrix completion by alternating steepest descent methods". In: (2016).

LoopedASD

Our variation of ASD developed to improve the rate of successful completions for low undersampling ratios on noisy data:

- Select the completion rank r for the sampled data $\mathcal{P}_{\Omega}(A)$
- Begin by making a rank 1 completion with random initial matrices
- For i = 2, ..., r, we use the output of the (i 1)th completion as an initial guess for the i^{th} completion.
- For each Loop, we must concatenate the initial guesses with a random row/column.

If X_{i-1}^* , Y_{i-1}^* are the outputs of the $(i-1)^{th}$ ASD completion, and $\mu_X \in \mathbb{R}^{n_E \times 1}$, $\mu_Y \in \mathbb{R}^{1 \times N}$ are random matrices. Then

$$X_i^0 = \left[X_{i-1}^* | \mu_X \right] \qquad Y_i^0 = \left[\frac{Y_{i-1}^*}{\mu_Y} \right]$$

- Matrix Completion
- 5 Sparse Scanning in Spectromicroscopy

Selecting the Completion Rank

Need a method to estimate the optimal completion rank r.

- Want the simplest approximation describing most of the data.
- Plot the completion errors, $e_c = ||A A^*||_F^2 / ||A||_F^2$, for different ranks:

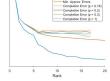
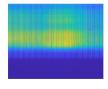


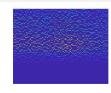
Figure 10: Scaled completion errors

- Cross-validation approach: run short completions on a training set and evaluate using the validation set.
- \blacksquare Set r at the point of max curvature of the validation errors.

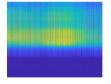
Completion of Real Data Sets:



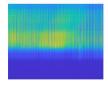
(a) Scaled Colour Image of Data Set 2 (flattened)



(b) Sampled DS2 (Robust Raster Sampling, p = 0.2)



(c) LoopedASD completion of Data Set 2 (r = 5)



(d) Completion with intentional artefact sampling

Numerically Sampled Data

- Sample X-ray Spectromicroscopy data set numerically.
- Complete using LoopedASD, analyse to the completions.

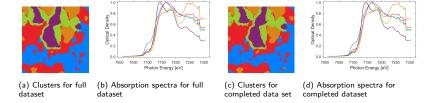


Figure 12: Comparing Clustering Results of completion against full data set, L=5, p=0.15, r=5.

Sparse Experiments

Visual comparison of full scans and sparse measurements. Unable to compare numerically due to material drift.

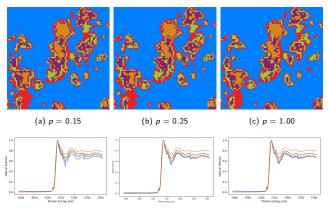


Figure 13: Imaging of chemical mixture of Fe2O3 and Fe3O4 with sparse measurements

Thank you for your attention!

- J. Tanner and K. Wei. "Low rank matrix completion by alternating steepest descent methods". In: (2016).
- [2] O. Townsend et al. "Undersampling raster scans in spectromicroscopy for a reduced dose and faster measurements". In: (2022).
- [3] Matthew Newville. "Fundamentals of XAFS". In: (2014).
- [4] M. lerotic et al. "Cluster Analysis of soft X-ray spectromicroscopy data". In: (2004).
- [5] E. J. Candès and B. Recht. "Exact Matrix Completion via Convex Optimisation". In: (2009).

Core Electron Excitation²³⁴

What (roughly) happens when high-energy x-rays are incident on a material?

²Matthew Newville. "Fundamentals of XAFS". In: (2014).

 $^{^3}$ M. lerotic et al. "Cluster Analysis of soft X-ray spectromicroscopy data". In: (2004).

⁴E. J. Candès and B. Recht. "Exact Matrix Completion via Convex Optimisation". In: (2009).

Core Electron Excitation²³⁴

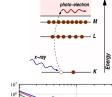
What (roughly) happens when high-energy x-rays are incident on a material?

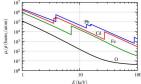
- Electron's $E_{Binding} > E_{Photon}$ → **no absorption**.
- Electron's $E_{Binding}$ < E_{Photon} \rightarrow **photon is absorbed** (photo-electron ejected from atom).

²Matthew Newville. "Fundamentals of XAFS". In: (2014).

³M. lerotic et al. "Cluster Analysis of soft X-ray spectromicroscopy data". In: (2004).

⁴E. J. Candès and B. Recht. "Exact Matrix Completion via Convex Optimisation". In: (2009).



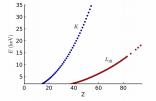


- For high E_{Photon} , we get core electron excitation.
- Causes sharp rise in Absorption Coefficient μ (absorption edge).

What (roughly) happens when high-energy x-rays are incident on a material?

- Electron's $E_{Binding} > E_{Photon}$ \rightarrow no absorption.
- Electron's $E_{Binding}$ < E_{Photon} → photon is absorbed (photo-electron ejected from atom).

 $ln \cdot (2014)$



²Matthew Newville "Fundamentals of XAFS"