EARLY STOPPING OF UNTRAINED NEURAL NETWORKS

Tim Jahn (joint with Bangti Jin)

London, 23.5.23

 INTRODUCTION
 RESULTS
 PROOF SKETCH
 CONCLUSION

 ●000
 000
 0000
 00

NEURAL NETWORKS IN IMAGING SCIENCE

Supervised learning: Network's weights are adjusted through training on paired data all images from **Ulyanov et al. 2018**

Untrained Neural Networks

Popular network architecture for image tasks: U-net

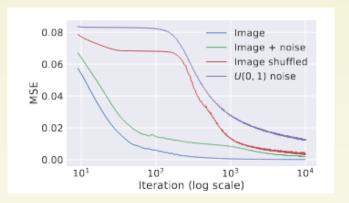
Input
$$z$$
 d_1 d_2 \cdots d_N s_1 s_2 \cdots s_N Output d_1 d_2 d_2 d_2 d_3 d_4 d_5 d_5

What if no training data available?

Deep image prior (Ulyanov et al. 2018)

Network weight's are tuned to fit a single image from random input

Uljanov et al. use highly over-parametrised U-net. network can fit any output, but natural images substantially faster



"Regularisation by architecture"+ early stopping

ILL-POSED INVERSE PROBLEMS

(Discrete) inverse problem:

$$Ax = v^{\delta}$$

- forward model $A \in \mathbb{R}^{m \times n}$,
- noisy data $y^{\delta} = y^{\dagger} + \delta \xi \in \mathbb{R}^n$,
- exact solution $x^{\dagger} = A^{+}y^{\dagger}$.

Problem: A ill-conditioned \Rightarrow standard inversion does not work.

Example: Computerised tomography, image deblurring

OUR SETTING

We use

$$G(C) := ReLU(UC)v$$

to approximate x^{\dagger} .

- ReLU = ReLU(s) = max(s, 0) rectifier linear unit applied componentwise,
- $U \in \mathbb{R}^{n \times n}$ (usually a convolution)
- $v \in \mathbb{R}^N$ normalised with entries ± 1 ,
- $C \in \mathbb{R}^{n \times N}$ weights to be tuned

TUNING OF WEIGHTS C

Apply gradient descent to

$$\mathcal{L}(C) := \frac{1}{2} \|AG(C) - y^{\delta}\|^2$$

with random Gaussian initilisation C_0 .

Discrepancy principle for stopping of the iteration:

$$k_{\mathrm{dp}}^{\delta} := \min \left\{ k \geq 0 \ : \ \|AG(C_k) - y^{\delta}\| \leq \tau \delta
ight\}$$

OPTIMAL CONVERGENCE

Source condition: $\mathcal{X}_{\nu,\rho}:=\left\{x\in\mathbb{R}^n\ :\ x=(A^TA)^{\nu/2}w,\ \|w\|\leq\rho\right\}$

worst-case-error rate: $err_{WC}(\delta, \rho, \nu)$

THEOREM (J., JIN)

Assume that A and $\Sigma(U)$ have polynomially decaying singular values and aligned right singular vectors. Then, for $N=N(\delta,\epsilon)$ large enough and $\omega=\omega(\delta,\epsilon)$ small enough and a constant C>0, it holds that

$$\inf_{\mathsf{X}^\dagger \in \mathcal{X}_{\rho,\nu}} \mathbb{P}\left(\| \mathsf{G}(C_{k_{\mathrm{dp}}^\delta}) - \mathsf{X}^\dagger \| \le C \operatorname{err}_{\mathsf{WC}}(\delta, \rho, \nu) \right) \ge 1 - \epsilon.$$

"Optimal convergence for large enough network"

 $\mathcal{J}(C_0)$ jacobian at random initialisation C_0 .

$$\mathbb{E}\left[\mathcal{J}(C_0)\mathcal{J}(C_0)^T\right] = \left(\frac{1}{2}\left(1 - \frac{1}{\pi}\cos^{-1}\left(\frac{(u_i, u_j)}{\|u_i\| \|u_j\|}\right)\right)(u_i, u_j)\right)_{i,j=1}^n$$
$$=: \Sigma(U) = JJ^T$$

J reference jacobian

 \Longrightarrow Jacobian at initialisation approximately only dependent on U

Compare dynamics of nonlinear and linear least squares

$$\mathcal{L}(C) = \frac{1}{2} \|AG(C) - y^{\delta}\|$$

$$\mathcal{L}^{\text{lin}}(C) = \frac{1}{2} ||AG(C_0) + AJ(c - c_0) - y^{\delta}||^2$$

 (c, c_0) are vectorised versions of C, C_0

 \Longrightarrow For not too many iterations, linear and nonlinear iterates (and residuals) stay close

ERROR DECOMPOSITION

- C_k nonlinear iterates, C_k^{lin} linear iterates,
- $G^{\text{lin}}(\cdot) = G(C_0) + J(\cdot c_0)$ linearised network,

$$||G(C_k) - x^{\dagger}|| \le ||G(C_k) - G^{lin}(C_k^{lin})|| + ||G^{lin}(C_k^{lin}) - x^{\dagger}||$$

First term:

$$\begin{split} \|G(C_k) - G^{\text{lin}}(C_k^{\text{lin}})\| &\leq \|G(C_k) - G^{\text{lin}}(C_k)\| + \|G^{\text{lin}}(C_k) - G^{\text{lin}}(C_k^{\text{lin}})\| \\ &\leq \sup_{\xi \in \text{conv}(C_k, C_0)} \|J(\xi) - J\| \|C_k - C_0\| + \|J(C_k^{\text{lin}} - C_k)\| \\ &< \text{small} \end{split}$$

for k not too large (dependent on N and ω).

For remainder $\|\mathcal{G}^{\mathrm{lin}}(C^{\mathrm{lin}}_{k_{\mathrm{dn}}^{\delta}})-x^{\dagger}\|$ mainly classical analysis.

Two issues:

- representation of x through linearised network
- random initialisation

 \implies Optimal rates for suitable aligned sinuglar vectors of A and $\Sigma(U)$ and polynomially decaying singular values.

CONCLUSION

- untrained neural networks provably can be used to solve inverse problems
- early-stopping essential
- discrepancy principle realises early stopping

OUTLOOK

Problem: N "extremely"large (e.g., $N > n \log(\epsilon^{-1}) \delta^{-21}$)

One approach: Pretraining on simpler data sets, in order to identify relevant subspaces.

Example: Radon transform

- application: x-ray tomography for medical diagnosis
- pretraining on synthetic data (ellipsoids,...)

