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NEURAL NETWORKS IN IMAGING SCIENCE

Supervised learning: Network’s weights are adjusted through training
on paired data
all images from Ulyanov et al. 2018
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UNTRAINED NEURAL NETWORKS

Popular network architecture for image tasks: U-net

What if no training data available?

Deep image prior (Ulyanov et al. 2018)
Network weight’s are tuned to fit a single image from random input
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Uljanov et al. use highly over-parametrised U-net.

network can fit any output, but natural images substantially faster

„Regularisation by architecture“+ early stopping
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ILL-POSED INVERSE PROBLEMS

(Discrete) inverse problem:
Ax = yδ

forward model A ∈ Rm×n,

noisy data yδ = y† + δξ ∈ Rn,

exact solution x† = A+y†.

Problem: A ill-conditioned⇒ standard inversion does not work.

Example: Computerised tomography, image deblurring
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OUR SETTING

We use

G(C) := ReLU(UC)v

to approximate x†.

ReLU = ReLU(s) = max(s, 0) rectifier linear unit applied
componentwise,

U ∈ Rn×n (usually a convolution)

v ∈ RN normalised with entries ±1,

C ∈ Rn×N weights to be tuned
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TUNING OF WEIGHTS C

Apply gradient descent to

L(C) :=
1
2
‖AG(C)− yδ‖2

with random Gaussian initilisation C0.

Discrepancy principle for stopping of the iteration:

kδ
dp := min

{
k ≥ 0 : ‖AG(Ck )− yδ‖ ≤ τδ

}
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OPTIMAL CONVERGENCE

Source condition: Xν,ρ :=
{

x ∈ Rn : x = (AT A)ν/2w , ‖w‖ ≤ ρ
}

worst-case-error rate: errwc(δ, ρ, ν)

THEOREM (J., JIN)

Assume that A and Σ(U) have polynomially decaying singular values
and aligned right singular vectors. Then, for N = N(δ, ε) large enough
and ω = ω(δ, ε) small enough and a constant C > 0, it holds that

inf
x†∈Xρ,ν

P

(
‖G(Ckδ

dp
)− x†‖ ≤ C errwc(δ, ρ, ν)

)
≥ 1− ε.

„Optimal convergence for large enough network“



INTRODUCTION RESULTS PROOF SKETCH CONCLUSION

J (C0) jacobian at random initialisation C0.

E
[
J (C0)J (C0)

T
]
=

(
1
2

(
1− 1

π
cos−1

(
(ui ,uj )

‖ui‖‖uj‖

))
(ui ,uj )

)n

i,j=1

=: Σ(U) = JJT

J reference jacobian

=⇒ Jacobian at initialisation approximately only dependent on U
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Compare dynamics of nonlinear and linear least squares

L(C) =
1
2
‖AG(C)− yδ‖

,

Llin(C) =
1
2
‖AG(C0) + AJ(c− c0)− yδ‖2

(c,c0 are vectorised versions of C,C0)

=⇒ For not too many iterations, linear and nonlinear iterates (and
residuals) stay close
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ERROR DECOMPOSITION

Ck nonlinear iterates, Clin
k linear iterates,

Glin (·) = G(C0) + J(· − c0) linearised network,

‖G(Ck )− x†‖ ≤ ‖G(Ck )−Glin(Clin
k )‖+ ‖Glin(Clin

k )− x†‖

First term:

‖G(Ck )−Glin(Clin
k )‖ ≤ ‖G(Ck )−Glin(Ck )‖+ ‖Glin(Ck )−Glin(Clin

k )‖

≤ sup
ξ∈conv(ck ,c0)

‖J (ξ)− J‖‖ck − c0‖+ ‖J(clin
k − ck )‖

≤ small

for k not too large (dependent on N and ω).
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For remainder ‖Glin(Clin
kδ

dp
)− x†‖ mainly classical analysis.

Two issues:

representation of x through linearised network

random initialisation

=⇒ Optimal rates for suitable aligned sinuglar vectors of A and Σ(U)
and polynomially decaying singular values.
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CONCLUSION

untrained neural networks provably can be used to solve inverse
problems

early-stopping essential

discrepancy principle realises early stopping
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OUTLOOK

Problem: N „extremely“large (e.g., N ≥ n log(ε−1)δ−21)

One approach: Pretraining on simpler data sets, in order to identify
relevant subspaces.

Example: Radon transform

application: x-ray tomography for medical diagnosis

pretraining on synthetic data (ellipsoids,...)
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