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Here be monsters…

Figure 1: Not quite at Mordor yet..
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Storytime…

“breaking the ubiquitous ML assumption in image and vision computing that errors and
uncertainties at neighbouring pixels are independent, despite their demonstrable spatial
structure”
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Is unsupervised learning a thing?



Unsupervised learning → generative models

Figure 2: Stable Diffusion: “The manifold of cats.”

• “Find me some p(z) and f(z) such that
x ∼ f(z) when z ∼ p(z)..”

• This has trivial solutions

• Need constraints
• Utility ↔ use-case

• Generative models as priors
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Inverse problem setup

• Inverse problem y = A x + ε for some forward model A : X → Y and noise ε

• Variational regularisation framework (for some similarity D(·, ·))

x∗ ∈ arg min
x∈X

D(y, A x) + λ R(x)

• Regulariser from an explicit prior distribution, R(x) := log p(x |θ)

• x∗ considered a MAP estimate if D(y, A x) := log p
(
y |f(A x), . . .

)
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Deep learning approaches for inverse problems

Supervised: image data 
pairs available

Unsupervised: only 
ground truth data

No data 

Forward model 
unknown in 
training 

Forward model 
known in 
training 

Adversarial 
regularisation 

Learned post 
processing

Deep image priors 

Automap 

Generative regularisers

Plug and play methods 

Unrolled iterative 
methods 

Deep equilibrium 
methods

No training 

Figure 2-1: A graph comparing various deep learning approaches to inverse prob-
lems.

model during the deep neural network training. Some methods decouple the
forward model and image reconstruction from the modelling of the image space
with a deep neural network and others utilise information about the forward
model in the deep neural network architecture. A summary of the analysis is also
given in table 2.1. For other reviews consider [16, 159].

2.4.1 Untrained Methods

Deep Image Priors (DIP)[222, 219, 59] take an untrained convolutional neural
network and use the weights of the neural network parameterise the image space
i.e. for a fixed z, x = f✓(z) maps the weights, ✓, to images, x. Given some
observed measurements, y, and a fixed z, the inverse problem can be reformulated
as

✓⇤ 2 argmin
✓

D(Af✓(z), y), x⇤ = f✓⇤(z), (2.13)

where D(·, ·) : Y ⇥ Y ! R�0 is some loss function. The idea is that the network
provides implicit regularisation as the convolutional networks favour ‘natural im-
ages’. Exactly what ‘natural’ means is hard to define.

The success of DIP usually relies on further regularisation of (2.13). If the gen-
erator network is su�ciently wide and given su�ciently many iterative updates,
then gradient descent will solve the non-convex optimisation problem in (2.13) to
fit any signal, y, however noisy or corrupted [222], which is not desirable. Addi-

28
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Generative models



Generative model zoo
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Unreasonable expectations of generative models?

x

z θϕ

e.g. VAE with:

z ∈ RM ,

x ∈ [0, 1]3×N×N

Figure 3: How many degrees of freedom are there in the image?
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Properties we would like

• Span the data space

• Representative samples
• Conditions on mapping
(e.g. “smooth”)

• Evaluate densities (e.g. take
likelihood)

• Uncertainty (e.g. account for
failure to model)

• Introspection
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Structured Uncertainty Prediction
Networks (SUPN)



“VAEs produce overly smooth output”

Encoder z Generator

VAE

SUPN

µ(z) , Σdiag(z)︸ ︷︷ ︸
Sample

Statistics don’t match

, Σfull(z)︸ ︷︷ ︸
Sample

Statistics match!!

−

Residual

Structure in
residual captured
by covariance

[Dorta et al. 2018] 11
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Problem! Dense covariance O(N2)…

• Problem: Σfull(z) is quadratic in the number of pixels

• Solution: Sparse parameterisation of the Cholesky factor of the precision

Σ(z) :=
[
Λ(z)

]−1 :=
[
LΛ(z) L⊤

Λ(z)
]−1

Neighbourhood
in image domain

Sparsity in the
precision Cholesky

matrix LΛ

Sparsity in the
precision matrix
Λ(z) := Σ−1(z)

12
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Efficient implementation

• Sparse parameterisation of the Cholesky factor of the precision

Σ(z) :=
[
Λ(z)

]−1 :=
[
LΛ(z) L⊤

Λ(z)
]−1

Figure 4: Implementation through convolutional structure: matrix-vector product in O(N)
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Examples of samples

Figure 5: Variation in samples from the model on test data
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Introspection of the captured covariance structure

Figure 6: Visualisation of the learned correlations
15



Links to established concepts…

• Links to Conditional Random Field (CRF) models
• a Gaussian CRF - e.g. “Regression Tree Fields” [Jancsary et al. 2012]

• Links to adaptive local regularisation models
• e.g. locally adaptive TV or Laplacian based methods

• Links to Wavelet approaches
• considering hierarchical extensions or combining fixed basis functions

• Things to be careful about
• priors on sparse precision (consider Cholesky structure)
• need to bound terms
• *lots to say about these things…*

16
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Testing with denoising…

Figure 7: Denoising example using SUPN (vs a denoising autoencoder). The SUPN model has only
been trained as in a generative manner (i.e. as a prior). 17



Testing with denoising…

Figure 8: Comparison to denoising autoencoder

18



SUPN as a prior for inverse problems



SUPN as a prior for inverse problems

• Consider a hierarchical model for the inverse problem

p(x, z |y) ∝ p(y |x) pG(x |z) pZ(z)

• We will take a MAP estimate for z rather than marginalising :-(

• From before (with a Gaussian observation likelihood)

D(y, A x) := 1
2σ2 ∥A x − y∥2

2

R(x) := min
z∈Z

log |Σθ(z)| + 1
2

∥∥x − µθ(z)
∥∥2

Σθ(z) + 1
2

∥z∥2
2

• Where the Generator provides N
(
x |µθ(z), Σθ(z)

)
via a network [µ, LΛ] = f(z; θ)

and ∥a∥2
Σ := a⊤ Σ−1 a denotes a Gaussian weighted norm

• Note: the network still outputs O(N) values and evaluation of R(x) can be
performed in O(N) time using LΛ for the first two terms

19
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Aside: Images and manifolds

Figure 9: The range of the generator
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Aside: Images and manifolds

Figure 10: The range of the generator
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Aside: Images and manifolds

Figure 11: Independence away from the generator
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Aside: Images and manifolds

Figure 12: Structured departure from the generator
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Proof of concept example: NYU fastMRI knee dataset

• Images from sampled magnitude volumes (not proper MRI!)

• Task inspired by the single-coil reconstruction

• Sample with a varying number of radial spokes

• Generator trained in two stages, first the mean, then the Cholesky

• Initialise with z(0) using the encoding of a rough reconstruction, given by the adjoint
of the forward operator, and the corresponding mean output for x(0)

• Use alternating gradient descent for x and z with backtracking line search

24



FastMRI knee covariance models…

Figure 13: Samples from trained generative models with diagonal and structured covariances
25



Introspection: Visualisation of learned covariances…

Figure 14: Visualisation of learned covariances; red indicates a high positive correlation, and blue is
a strong negative correlation.
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Comparison of different covariance structures

Figure 15: PSNR vs number of radial spokes. The test data was corrupted with additive Gaussian
noise of standard deviation 0.0125 on the left and 0.05 on the right.
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Comparison vs supervised reconstruction method

Figure 16: Comparison with the supervised variational networks [Hammernik et al. 2018]. The
vertical lines depict the experimental settings the variational networks were trained on.
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Comparison with optimisation of weights at test time

Figure 17: Comparison with constraint to the range (e.g. [Bora et al. 2017]) and optimising the
generator during reconstruction [Narnhofer et al. 2019]
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Example reconstruction comparison (varying number of spokes)

Figure 18: Varying number of spokes. The PSNR values are added in white and the red boxes
indicate the settings the highlighted variational network has been trained on. 30



Example reconstruction comparison (varying noise)

Figure 19: Varying the additive noise. The PSNR values are added in white and the red boxes
indicate the settings the highlighted variational network has been trained on.
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Non-Gaussian likelihoods



“Learning Structured Gaussians to Approximate Deep Ensembles”

Figure 20: Use the structured Gaussian approach for “ensemble distillation”; approximate the
output from a deep ensemble [Poggi et al. 2020, Lakshminarayanan et al. 2017]

[Simpson et al. 2022] 32



Non-Gaussian likelihood

• Use a link function to change to different likelihood (e.g. a depth range through logits)

• Training from ensemble data using log-likelihood for multiple outputs from the same
input

• The output distribution is seeking to capture epistemic and aleatoric uncertainty
(through the ensemble samples)

Advantages

• Efficiency improvement
• Ability to draw unlimited samples
• Introspection
• Conditional sampling

33



Accuracy and uncertainty results

Figure 21: Monocular depth estimation results vs the original ensemble
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Samples (video)
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Samples (video)
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Introspection (video)
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Introspection (video)
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Conditional sampling

Figure 22: We can also perform conditional sampling using efficient sparse precision operations

p(dU |dK = α) ∼ N (b, B)

b := µU − Λ−1
UU ΛUK (α − µK), B := Λ−1

UU

39



Where to next?



Open challenges

• Nice introspection but what about dataset bias?

• Extensions to complex variants (e.g. proper MRI)

• Convergence rates (e.g. looking at natural gradients)

• Convexity/uniqueness

• Assumption that “ground truth” data available

40



Thanks! https://www.ndfcampbell.org n.campbell@bath.ac.uk

Joint work with Era Dorta, Margaret Duff, Ivor Simpson, Sara Vicente, Lourdes Agapito, and
Matthias Ehrhardt. Acknowledgements to the EPSRC CAMERA Research Centre, the Centre
for Digital Entertainment and SAMBa CDTs, and the Royal Society.

• Compressed Sensing MRI Reconstruction Regularized by VAEs with Structured Image
Covariance, Margaret Duff, Ivor Simpson, Matthias J. Ehrhardt and Neill D. F. Campbell,
arXiv e-print

• Regularising Inverse Problems with Generative Machine Learning Models, Margaret
Duff, Neill D. F. Campbell and Matthias J. Ehrhardt, arXiv e-print

• Learning Structured Gaussians to Approximate Deep Ensembles, Ivor Simpson, Sara
Vicente and Neill D. F. Campbell, CVPR, 2022

• Structured Uncertainty Prediction Networks, Era Dorta Perez, Sara Vicente, Lourdes
Agapito, Neill D. F. Campbell and Ivor Simpson, CVPR, 2018
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