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Imaging inverse problems

We are interested in an unknown image x⋆ ∈ Rd .

We measure y ∈ Y, related to x⋆ by some mathematical model.

For example, in many imaging problems

y = Ax⋆ +w ,

for some operator A that is poorly conditioned or rank deficient,
and an unknown perturbation or “noise” w .

The recovery of x⋆ from y is usually not well posed. Additional
information is required in order to deliver meaningful solutions.
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Mathematical imaging frameworks

There are three main mathematical and computational frameworks for
inference in imaging inverse problems:

1 Mathematical analysis

2 Bayesian statistics.

3 Machine learning.

These frameworks have complementary strengths and weaknesses.

Our aim is a unifying framework of theory, methods, and algorithms
that inherits the benefits of each approach.
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The Bayesian statistical approach

Model x⋆ as a realisation of a r.v. x on Rd . Use the distribution of x
to regularise the problem and promote expected properties.

The observation y is a realisation of a r.v. (y∣x = x⋆).

Inferences about x⋆ from y are derived from the joint distribution of
(x,y) - specified via the decomposition p(x , y) = p(y ∣x)p(x).

This determines the posterior distribution, with density

p(x ∣y) = p(y ∣x)p(x)
∫Rd p(y ∣x̃)p(x̃)dx̃

,

which models our beliefs about x after observing y = y .

M. Pereyra (MI — HWU) Bayesian imaging with data-driven priors 5 / 29



Generative image priors encoded by neural networks

Here, we focus on Bayesian inference based on deep generative priors for
problems with abundant training data available to describe x:

1 Let {x ′i }Mi=1 be a training dataset that represents our prior knowledge
about x.

2 We adopt a manifold hypothesis and suppose that x takes values
close to an unknown p-dimensional submanifold of Rd .

3 To estimate the manifold, we introduce a latent r.v. z on Rp, with
p ≪ d , and a mapping νθ ∶ Rp ↦ Rd , such that the push-forward
measure of z ∼ N(0, Ip) under νθ is close to {x ′i }Mi=1 (in dist.).

4 We implement νθ as a neural network. Can learn νθ from {x ′i }Mi=1 by
using, e.g., a VAE, a GAN, or a normalising flow approach.
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Illustrative example - Rosenbrock distribution
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Left: training data from the two-dimensional Rosenbrock distribution. Right:
push-forward of z ∼ N(0, Ip) under νθ as implemented by a VAE, with p = 1.
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Posterior distributions for generative priors

With z and νθ, we have the likelihood p(y ∣z) = p(y ∣x = νθ(z)).

We use Bayes’ theorem to derive the posterior for z∣y = y

p(z ∣y) = p(y ∣x = νθ(z))p(z)
∫Rp p(y ∣z̃)p(z̃)dz̃

,

Pushing (z∣y = y) under νθ(z) leads to the posterior for (x∣y = y),
which supported on a manifold and does not have a density.
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Key questions

Some fundamental questions:

1 Under what conditions on the generative model are the resulting
Bayesian models well-posed and amenable to efficient computation?
Do the key quantities of interest inherit this well-posed nature?

2 Are these Bayesian methods and algorithms delivering solutions that
are meaningful from a non-subjective point of view?

3 Can we perform computation for these models with non-asymptotic
accuracy guarantees, under easily verifiable conditions?

In this short talk, we will focus on the first two questions and demonstrate
the approach with some numerical experiments.
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The oracle Bayesian model

We analyse Bayesian models with data-driven priors in an M-complete
modelling framework:

There exists a true - albeit unknown - marginal distribution for x and
posterior distribution for (x∣y = y).

Basing inferences on these oracle models is theoretically optimal.

We henceforth denote this optimal prior distribution by µ. When µ
admits a density w.r.t. the Leb. measure on Rd , we denote it by p⋆.

In that case, the posterior for x ∣y has density

p⋆(x ∣y) = p(y ∣x)p⋆(x)
∫Rd p(y ∣x̃)p⋆(x̃)dx̃

.
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Approximating the oracle Bayesian model

We regard the training data {x ′i }Mi=1 as a sample from µ.

When we learn νθ and approximate µ by assuming that x = νθ(z) for
z ∼ N(0, Ip), pushing (z∣y = y) under νθ leads to the posterior for
(x∣y = y) that approximates the oracle p⋆(x ∣y).

Accurately approximating p⋆(x ∣y) leads to Bayesian probabilities that
map meaningfully to the real-world under a frequentist definition of
probability.

Holden et al. (2022a) establishes that (z∣y = y) and (x∣y = y) are
well-posed in the sense of Hadamard and have finite moments.
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Illustrative experiments

We first illustrate the proposed approach with the MNIST dataset.

We perform the following advanced inferences:
1 Identify the latent dimension p.
2 Perform MMSE inference in challenging image denoising, inpainting,

and deblurring experiments.
3 Adopt a likelihood-ratio test to detect out-of-sample observations that

should not be analysed with the Bayesian model.
4 Assess the frequentist accuracy of the Bayesian probabilities reported

by the model.

We report comparisons with MAP estimation under the same model,
and with PnP-ADMM by using a DnCNN denoiser.
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Identification of manifold dimension p

Figure: Trace of sample covariance of νθ(xi) across all test images. The amount
of information encoded by the prior stabilises for p ≈ 12, additional dimensions do
not significantly increase the amount of prior information encoded .
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Denoising

True Image

Observation
σ = 0.1 σ = 0.25 σ = 1.0 σ = 0.1 σ = 0.25 σ = 1.0

NNET
27.81/0.9925.57/0.9417.22/0.72 27.52/00.9923.00/0.9714.85/0.75

MAP
25.06/0.8724.16/0.8716.87/0.72 23.69/0.91 21.50/0.9215.88/0.81

MMSE (Ours)
24.99/0.9223.99/0.9117.58/0.82 21.94/0.96 21.85/0.9618.74/0.81
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Inpainting

True Image

Observation
σ = 0.025 σ = 0.1 σ = 0.25 σ = 0.025 σ = 0.1 σ = 0.25

PnP ADMM
19.90/0.7618.68/0.7617.58/0.69 22.19/0.7622.54/0.7720.80/0.73

MAP
19.01/0.8414.85/0.6514.79/0.58 24.26/0.9422.20/0.8814.22/0.62

MMSE (Ours)
21.36/0.9120.47/0.8918.54/0.83 24.88/0.9624.39/0.9520.08/0.86
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Deconvolution

True Image

Observation
σ = 0.025 σ = 0.1 σ = 0.25 σ = 0.025 σ = 0.1 σ = 0.25

PnP ADMM
28.58/0.9620.73/0.9014.47/0.71 21.28/0.9416.08/0.7812.97/0.57

MAP
27.81/0.9723.17/0.9315.20/0.70 22.82/0.9421.46/0.9214.92/0.68

MMSE (Ours)
28.07/0.9825.08/0.9624.41/0.95 22.64/0.9521.21/0.9417.57/0.78
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Likelihood ratio test for out-of-distribution detection
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Figure: Histograms of marginal likelihoods for image denoising, inpainting and
deblurring experiments. Out-of-sample detection powers for notMNIST of 99.6%,
88.5% and 99.8% respectively.

content...
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Coverage test: frequentist accur. of Bayesian probabilities
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Figure: Denoising
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Figure: Inpainting
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Conditional generative priors

Despite their success in computer vision, scaling generative models to
large inference problems reliably is difficult because of mode collapse,
spurious modes, or other sources of bias.

To reduce the difficulty of the machine learning problem, we consider
a conditional generative model x = νuθ (z), z ∼ N(0, Ip), that models
the distribution of x given some additional r.v. u.

For this construction to be useful, u should have low uncertainty
given y .
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Conditional generative priors

For example, we let u denote a low resolution version of x, and
implement νuθ by using a normalising flow for image super-resolution.

This leads to the model

p(z ∣y ,u) = p(y ∣z ,u)p(z)
p(y ∣u)

,

with p(y ∣z ,u) = p(y ∣x = νuθ (z)) and p(y ∣u) = ∫Rp p(y ∣z̃ ,u)p(z̃)dz̃ .
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Empirical Bayesian imaging with conditional generative
priors

We accurately estimate u⋆ from y by maximum marginal likelihood
estimation:

û = argmax
µ

pθ(y ∣u) .

Adopting an empirical Bayesian strategy, we perform inference on
(x∣y = y ,u = û) by using

p(z ∣y , û) = p(y ∣z , û)p(z)
p(y ∣û)

,

and pushing (z∣y = y ,u = û) to (x∣y = y ,u = û) by using νuθ .
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Bayesian computation

A simple algorithm to compute û probabilities and expectations w.r.t.
p(z ∣y , û) is the Stochastic Approximation Proximal Gradient scheme

Zk+1 = Zk + δk∇z log p(y ∣Zk ,uk) + δk∇z log p(Zk) +
√
2δkZk+1 ,

and
uk+1 = ΠU[uk + γk∇u log p(Zk+1∣y ,uk)] ,

where Zk+1 ∼ N(0, Id), (δk)k∈N and (γk)k∈N are sequences of
step-sizes, and ΠU denotes the Euclidean projection onto the set of
admissible values for u.

This SAPG is reasonably well understood and provably convergent
under easily verifiable conditions on p(z ∣y). See, e.g.,
https://doi.org/10.1007/s11222-020-09986-y and
https://doi.org/10.1137/20M1339829 for details.
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Illustrative example - Image deblurring

Recover x⋆ from a blurred and noisy measurement y (PSNR, LPIPS).

y x⋆

PnP (DnCNN) ADMM
(27.5dB, 0.34)

PnP (MMO) FB
(27.8dB, 0.28)

Proposed
(28.2dB, 0.22)
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Illustrative example - Image pan-sharpening

We seek to recover x⋆ from two noisy linear observations y1 and y2, one
with spectral fine details and the other with spatial fine detail.

y1 y2

Proposed (31.5dB) PnP ADMM (28.5dB) x⋆
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Conclusion

We have studied methodology for Bayesian inference with generative
priors encoded by neural networks, learnt from training data.

Some empirical evidence that the resulting models are sufficiently
close to the oracle to report probabilities that are meaningful under a
frequentist definition of probability - first example in imaging sciences!

A key challenge to scale the approach to large problems is that
generative models struggle to learn high-dimensional distributions.

We have addressed that difficulty by adopting an empirical Bayesian
approach and considering a conditional generative prior.

Thank you!
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