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0 Introduction
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Imaging inverse problems

We are interested in an unknown image x* € RY.
We measure y € Y, related to x* by some mathematical model.
For example, in many imaging problems
*
y=Ax"+w,

for some operator A that is poorly conditioned or rank deficient,
and an unknown perturbation or “noise” w.

The recovery of x* from y is usually not well posed. Additional
information is required in order to deliver meaningful solutions.
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Mathematical imaging frameworks

@ There are three main mathematical and computational frameworks for
inference in imaging inverse problems:

@ Mathematical analysis
@ Bayesian statistics.
© Machine learning.

@ These frameworks have complementary strengths and weaknesses.

@ Our aim is a unifying framework of theory, methods, and algorithms
that inherits the benefits of each approach.
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e Bayesian imaging with generative priors supported on manifolds
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The Bayesian statistical approach

e Model x* as a realisation of a r.v. x on R?. Use the distribution of x
to regularise the problem and promote expected properties.

@ The observation y is a realisation of a r.v. (y|x = x*).

@ Inferences about x* from y are derived from the joint distribution of
(x,y) - specified via the decomposition p(x,y) = p(y|x)p(x).
@ This determines the posterior distribution, with density

plyl¥)p(x)
Jra P(yIR)p(X)d%

which models our beliefs about x after observing y = y.

p(xly) =
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Generative image priors encoded by neural networks

Here, we focus on Bayesian inference based on deep generative priors for
problems with abundant training data available to describe x:

Q Let {x,-'},(‘fl be a training dataset that represents our prior knowledge
about x.

@ We adopt a manifold hypothesis and suppose that x takes values
close to an unknown p-dimensional submanifold of RY.

© To estimate the manifold, we introduce a latent r.v. z on RP, with
p < d, and a mapping vy : RP — RY, such that the push-forward
measure of z ~ N(0,1,) under v is close to {x/}¥, (in dist.).

@ We implement vy as a neural network. Can learn vy from {x/}¥ by
using, e.g., a VAE, a GAN, or a normalising flow approach.
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[llustrative example - Rosenbrock distribution
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Left: training data from the two-dimensional Rosenbrock distribution. Right:
push-forward of z ~ N'(0,1,) under vy as implemented by a VAE, with p = 1.
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Posterior distributions for generative priors

e With z and vy, we have the likelihood p(y|z) = p(y|x = vy(2)).
@ We use Bayes' theorem to derive the posterior for z|y =y

p(ylx =vy(2))p(2)
Jre P(¥1Z)p(2)d2 ’

p(zly) =

@ Pushing (z]y = y) under vy(z) leads to the posterior for (x|y = y),
which supported on a manifold and does not have a density.
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Some fundamental questions:

@ Under what conditions on the generative model are the resulting
Bayesian models well-posed and amenable to efficient computation?
Do the key quantities of interest inherit this well-posed nature?

© Are these Bayesian methods and algorithms delivering solutions that
are meaningful from a non-subjective point of view?

© Can we perform computation for these models with non-asymptotic
accuracy guarantees, under easily verifiable conditions?

In this short talk, we will focus on the first two questions and demonstrate
the approach with some numerical experiments.
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Key papers

For technical details please see:

@ M. Holden, M. Pereyra, K. Zygalakis, “Bayesian Imaging with
Data-Driven Priors Encoded by Neural Networks”, SIAM Journal on
Imaging Sciences, 15 (2), 2022.
https://doi.org/10.1137/21M1406313.

@ S. Melidonis, M. Holden, P. Dobson, Y. Altmann, M. Pereyra, K.
Zygalakis, “Empirical Bayesian imaging with conditional generative
priors encoded by neural networks”, in preparation.

M. Pereyra (Ml — HWU) Bayesian imaging with data-driven priors


https://doi.org/10.1137/21M1406313

The oracle Bayesian model

We analyse Bayesian models with data-driven priors in an M-complete
modelling framework:

@ There exists a true - albeit unknown - marginal distribution for x and
posterior distribution for (x|y = y).

@ Basing inferences on these oracle models is theoretically optimal.

@ We henceforth denote this optimal prior distribution by p. When p
admits a density w.r.t. the Leb. measure on R, we denote it by p*.

@ In that case, the posterior for x|y has density

p(y[x)p* (x)
Jra P(y[X)p* (X)dX

p*(xly) =
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Approximating the oracle Bayesian model

o We regard the training data {x/}¥, as a sample from .

@ When we learn vy and approximate p by assuming that x = vy(z) for
z ~ N (0,1,), pushing (zly = y) under vy leads to the posterior for
(x|y = y) that approximates the oracle p*(x|y).

@ Accurately approximating p*(x|y) leads to Bayesian probabilities that
map meaningfully to the real-world under a frequentist definition of
probability.

e Holden et al. (2022a) establishes that (z|ly = y) and (x|y = y) are
well-posed in the sense of Hadamard and have finite moments.
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e Illustrative numerical experiments with a VAE prior
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lllustrative experiments

@ We first illustrate the proposed approach with the MNIST dataset.

@ We perform the following advanced inferences:

@ Identify the latent dimension p.

@ Perform MMSE inference in challenging image denoising, inpainting,
and deblurring experiments.

© Adopt a likelihood-ratio test to detect out-of-sample observations that
should not be analysed with the Bayesian model.

© Assess the frequentist accuracy of the Bayesian probabilities reported
by the model.

@ We report comparisons with MAP estimation under the same model,
and with PnP-ADMM by using a DnCNN denoiser.
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Identification of manifold dimension p
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Figure: Trace of sample covariance of vy(x;) across all test images. The amount
of information encoded by the prior stabilises for p ~ 12, additional dimensions do
not significantly increase the amount of prior information encoded .
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True Image .
Observation

c=01 o0=025 o0=10 o=0.1 c=025 o0=1.0

NNET
27.81/0.9925.57/0.9417.22/0.72  27.52/00.9923.00/0.9714.85/0.75
,"‘l

25.06/0.8724.16/0.8716.87/0.72  23.69,/0.91 21.50/0.9215.88/0.81

s oy M

24.99/0.9223.99/0.9117.58/0.82  21.94/0.96 21.85/0.9618.74/0.81
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Inpainting
True Image

vl v v R e T,
A R R
Observation P S HOR RS OOR T rhpgR PR
o =0.025 = o=0.25 0c=0.025 0=01 o0=0.25

... GICIEl MMM

19.90/0.7618.68/0.7617.58/0.69  22.19/0.7622.54/0.7720.80/0.73

. OO0 dEE

19.01/0.8414.85/0.6514.79/0.58  24.26/0.9422.20/0.8814.22/0.62

MMSE (Ours)

21.36/0.9120.47/0.8918.54/0.83  24.88/0.9624.39,/0.9520.08,/0.86
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Deconvolution
True Image .

Observation . . H . . -

0=0025 o0=01 o0=0.25 0=0025 0=01 o0=0.25

28.58/0.9620.73/0.9014.47/0.71  21.28/0.9416.08/0.7812.97/0.57

MAP

27.81/0.9723.17/0.9315.20/0.70  22.82/0.9421.46/0.9214.92/0.68

MMSE (Ours)

28.07/0.9825.08/0.9624.41/0.95  22.64/0.9521.21/0.9417.57/0.78
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Likelihood ratio test for out-of-distribution detection
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Figure: Denoising Figure: Inpainting Figure: Deblurring
Figure: Histograms of marginal likelihoods for image denoising, inpainting and

deblurring experiments. Out-of-sample detection powers for notMNIST of 99.6%,
88.5% and 99.8% respectively.
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Coverage test: frequentist accur. of Bayesian probabilities
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Figure: Denoising Figure: Inpainting
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e Scaling to high dimensions with conditional normalising flow models
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Conditional generative priors

@ Despite their success in computer vision, scaling generative models to
large inference problems reliably is difficult because of mode collapse,
spurious modes, or other sources of bias.

@ To reduce the difficulty of the machine learning problem, we consider
a conditional generative model x = v (%), z ~ N'(0,1,), that models
the distribution of x given some additional r.v. w.

@ For this construction to be useful, u should have low uncertainty
given y.
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Conditional generative priors

@ For example, we let u denote a low resolution version of x, and
implement v by using a normalising flow for image super-resolution.

@ This leads to the model

plylz, u)p(2)

plaly,u) = p(y|u)

)

with p(ylz,u) = p(ylx = v(2)) and p(ylu) = fys p(yI2, u)p(2)dZ.
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Empirical Bayesian imaging with conditional generative

priors

@ We accurately estimate u* from y by maximum marginal likelihood
estimation:

i =argmaxpy(y|u).
n

@ Adopting an empirical Bayesian strategy, we perform inference on
(x|y = y,m = 0) by using

p(ylz, 8)p(z)

plaly. &) = p(y|d)

and pushing (zly = y,u =) to (x|y = y,u = {i) by using v§.
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Bayesian computation

@ A simple algorithm to compute & probabilities and expectations w.r.t.
p(z|y, 0) is the Stochastic Approximation Proximal Gradient scheme

Zyi1 = Z + 0k 2 log p(y|Zi, uk) + 0V 2 log p(Zk) + /20 Z+1

and
U1 = Myluk + Y Vulog p(Zisaly, uk)],

where Z;1 ~ N(0,14), (0x)ken and (7« )ken are sequences of
step-sizes, and [1y denotes the Euclidean projection onto the set of
admissible values for u.

@ This SAPG is reasonably well understood and provably convergent
under easily verifiable conditions on p(z|y). See, e.g.,
https://doi.org/10.1007/s11222-020-09986-y and
https://doi.org/10.1137/20M1339829 for details.
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lllustrative example - Image deblurring

Recover x* from a blurred and noisy measurement y (PSNR, LPIPS).

Sl 4 g
PnP (DnCNN) ADMM PnP (MMO) FB Proposed
(27.5dB, 0.34) (27.8dB, 0.28) (28.2dB, 0.22)
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lllustrative example - Image pan-sharpening

We seek to recover x* from two noisy linear observations y; and y», one
with spectral fine details and the other with spatial fine detail.

!

Proposed (31.5dB)  PnP ADMM (28.5dB) X

M. Pereyra (Ml — HWU) Bayesian imaging with data-driven priors



Outline

© Conclusion
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Conclusion

@ We have studied methodology for Bayesian inference with generative
priors encoded by neural networks, learnt from training data.

@ Some empirical evidence that the resulting models are sufficiently
close to the oracle to report probabilities that are meaningful under a
frequentist definition of probability - first example in imaging sciences!

@ A key challenge to scale the approach to large problems is that
generative models struggle to learn high-dimensional distributions.

@ We have addressed that difficulty by adopting an empirical Bayesian
approach and considering a conditional generative prior.

Thank youl!
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