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Learning to optimize (L20)

This talk is based on our works:

» Data-Driven Mirror Descent with Input-Convex Neural Networks.
SIAM Journal on Mathematics of Data Science (SIMODS), 2023

» Robust Data-Driven Accelerated Mirror Descent. ICASSP 2023

In this line of works, we propose new L20 paradigms based on mirror
descent.
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Introduction

» Large-scale optimization problems mig(l f(zx) are ubiquitous in
€

machine learning, data science, computational imaging, - - -
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Introduction

Example: Empirical risk minimization in machine learning

» Training a prediction function via empirical risk minimization
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Introduction

Example in inverse problems
» Tomographic medical imaging (CT, MRI, PET...):
b= Az + noise,

estimate z' via solving:

€ U(bs, a; A )
¥ € arg Hean flx Z al'z) g(z)

regularization

Data fidelity

measurements (b)  Solution (z*)
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Introduction

Large-scale optimization

» The number of data-sample n and dimension d can be huge in
modern data science applications.
— leading to significant computational challenges for optimization algorithms!
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Introduction

Optimal algorithms for convex composite finite-sum optimization

> Recall our generic objective: f(z):= 13"  1;(x) + Ag()

T n

» F(x) is convex and each f; has L-lipschitz continous gradient.
IVli(z) = VIi(y)ll2 < Lllz = yl2

» Optimal algorithms — SGD with variance-reduction + momentum
acceleration! achieves worse-case optimal convergence.

To achieve E[f(z')] — f(2*) <€, O(n+ /L) gradient evaluation
is needed.

Matching the lower bound Q(n + 4/ %) [Woodworth&Srebro, NeurlPS'16]

]'Representative examples of optimal SGD methods: Katyusha [Allen-Zhu, STOC'17], MiG [Zhou et al, ICML'18],Varag [Lan et al,

NeurlPS'19]...
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What optimization algorithms have missed out...
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What optimization algorithms have missed out...
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If we take a wavelet transform, we can see that at least 90% of
coefficients are nearly zeros.
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What optimization algorithms have missed out...

N

J

If we take the gradient of an image, we can see that around 95% of
coefficients are nearly zeros.
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The Limitations of Classical Algorithmic Design Paradigms

The current paradigms in large-scale optimization focuses on generic
algorithms for wide classes,

» ignoring the intrinsic low-dimensional structure of the problem

[

> ignoring the data structure/distribution in specific applications

— may lead to suboptimal practical performances
Hand-crafting specialized algorithms for every narrow subclass is
impractical.
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Learning to optimize (L20)

» Classical paradigm: given a generic class of optimization problem,
design an efficient algorithm.

» L20 paradigm: given random instances of problems from a target
task distribution, learn a solution algorithm to solve novel random
instances from the same task distribution.

Objective: Combine machine learning with optimization to obtain better
solutions faster, with provable convergence rates!
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Background on mirror descent (MD)
Gradient descent (GD): zy41 =z — t, Vf(xk)

. 1
Tyl = argmln{(x, Vf(.’lﬁk» + 27 H.’E - Cll‘k”g}
zER? 123

Mirror descent (MD):

1
ZTy1 = argmin {<$, Vi(zk))+ B¢(x,xk)}
TERP ty

» & is strongly convex, continuously differentiable (mirror potential).
» Bregman distance: Bg(z,y) = ®(x) — @(y) — (VP®(y),xz — y).

» Convex conjugate ®*(u) = sup,cy {(u,z) — ®(x)}, satisfies
Vo = (Vo) L.

> MD update: yr = VO(z1) — tx VI (2k), 2pt1 = VO*(yg).
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Parameterizing the mirror potential ¢

» Parameterize ® using an input-convex neural network (ICNN): M,

» Architecture of Mp:

zo(z) =0
zit1(x) = @i (B; (zi(z)) + Wi(x) + b;) ,i =0,1,--- , L — 1

My(x) = AvgPool (z(z)), 0 = (Bi, Wi, b))

> W;:x+— W;(z) convex, B;: conv2D layers with > 0 weights

> ;. point-wise convex and monotonically non-decreasing (e.g.,
relu/leaky relu).
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ICNN architecture

3z . x

K L+1] Mg
> 0 weights
oonvex layers

» The construction is recursive, where each z;(z) is a vector whose
elements are convex functions of the input x.

» The construction uses the following two properties:
1. >, wius(x) is convex in convex in x if each u; is convex and w; > 0.

2. wouw is convex if both u and ¢ are convex and ¢ is
monotonically-increasing.

15/34



Main challenges

» Recall that MD needs both & and ®*.

» If ® is modeled using an ICNN, how does one compute/approximate
the gradient of ®*7

» We use another network My to approximate ®*, and then enforce
VMj; = (VMy)~" using a soft penalty during training.

» No longer have an exact MD algorithm, so can we quantify the
regret w.r.t. the approximation error? Yes!
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Regret of approximate MD
> Exact MD: zp 1 = VO* (V®(xy) — £,V f(zk))

» Approximate MD: &1 = Vo' (VO(xg) — txV f(zk))

Regret Bound for approximate MD: Suppose f is p-strongly convex and
® is a mirror potential with strong convexity parameter o. Let {Z4}72,
be some sequence in X C R", and {z;}72, be the corresponding exact
MD iterates. We have the following regret bound:

K
S l(f (@) - £a) < Bla*, 3 +Z[knw 2
k=1

1 1
—+— | [|[VO(2 -Vo 2
+ (g 3 ) [700) ~ VO
approximation error dj.1

2

Y
*

O = V() — V()2 = || (Voo Ve ~1d) ()

where yj, := V®(zy) — iV f(xg).
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Training objective

» Parameterizing the solution operator via unrolling:
Tpy1 = VMH(VMy(Zy) — txVf(Zk)), k=0,1,2,--- /N — 1.
» Training loss:
N
L(6,9) = Efera, Z f(@k) + s [[(VMg o VMg — 1d)(Z) ||

k=1

» Two-fold goal: decrease in the target objective + ensure
forward-backward consistency.

> We set s = s for all k, and then increase s in every epoch.

18 /34



A couple of concrete examples

» Support vector machine (SVM):

.1 4 T
min -w'w+C max(0,1 —y;(w' ¢; + b
foin ; (0,1~ yi(w ' s +1))

F = {fz(w, b) = %WTW + CZmaX(O, 1—yi(w' o + b))} .

1€L
» Each instance of f depends on the set Z of feature-target pairs.

» Image Inpainting:

1
min 5| Az — g3 + NV,

1 L
F= {f(x) = §||A:z: —y|I3 + A[|[V]|; : noisy Imagesy} .
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Numerical results

20 /34



Toy example: least squares in R?
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),f: {Uola) = [We — b3 - b B?)

> Theoretically optimal mirror map: ®(z) = 22T (W W)z
» Our parameterization: ®(z) = sz Az, A symmetric PD

» Learned MD (LMD) — <055 0. 39>, nearly 0.8 < 5>
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SVM training
» Data: MNIST, two-class SVM (digits 4 and 9)

> Trained on features ¢ : R28” s R50 extracted by a neural net
trained with 97% accuracy

» Trained and tested on different folds

» Only 10 iterations are trained and then extended with various
step-size multipliers
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TV denoising (Gaussian noise)

» Data: STL-10 images
» LMD trained with noise-level o = 0.05 for 10 iterations

1 .
F= {f(ac) = §||:z: —yll3 + A||Vz]|; : noisy |magesy}.
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TV denoising (Gaussian noise)
» Data: STL-10 images
» LMD trained with noise-level o = 0.05 for 10 iterations

(d) Adaptive LMD (e) Adam (f) Adam
(3 iterations) (3 iterations) (10 iterations)
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TV Inpainting

» Data: STL-10 images

» LMD trained with 20% missing pixels and noise-level o = 0.05 for
10 iterations

min [|Z 0 (z = )% + AV, (1)
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TV Inpainting

- Adaptive LMD

o* Step-size multi

Reconstruction loss
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Robustness

» How stable is this scheme past the learned number of iterations?
» Change of domain?
» Different forward operator?
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Learned Accelerated MD

Algorithm 1: Learned Accelerated Mirror Descent (LAMD)

Data: Mirror potential ¥, step-sizes (t)_, > 0, parameter r > 3
Initialize 2(©) = z¢, 29 = .
for1 <k <N do

A= r

D) = N 20 4 (1 — \p)z )

2D = VMG (VMp(204D)) — 42V f (1))

end

> Rates: AMD O(1/k?), MD O(1/Vk)
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Experiment setup

» Train to denoise noisy ellipse phantoms

» Ray transform is applied and 10% Gaussian noise added to get noisy
sinograms
» FBP is applied to noisy sinograms to get noisy ellipse phantoms

» Denoise using TV regularization

min |z — y[|* + || Vz[l;

Left: ground truth. Right: noisy phantoms.
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LMD and LMD+momentum (LAMD) for CT

> Denoising FBP images: F = {f(z) = ||z — y|I3 + A[|Vz|1 }.

» Trained LMD on ellipse phantoms, where 3 is FBP with
parallel-beam projection.

[£x) = ]

° o
X o
+ o
Ao
* o

Long-term evolution of LMD and LAMD (beyond N = 10 that they were
trained for) with various step-size extensions.
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Generalizability of the learned mirror maps

P Do the learned mirror maps generalize to out-of-distribution problems? Yes, but
subject to an appropriate extension of the LMD and LAMD (learned accelerated

MD) iterations.
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P> LAMD (i.e., learned MD with momentum) has better long-term stability, and

the mirror maps generalize reasonably well to a similar problem class.
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Generalizability of the learned mirror maps

» Do the learned mirror maps generalize to out-of-distribution
problems? Yes, but subject to an appropriate extension of the LMD
and LAMD (learned accelerated MD) iterations.
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» LAMD (i.e., learned MD with momentum) has better long-term
stability, and the mirror maps generalize reasonably well to a similar
problem class.
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Summary and outlook

» Can use ICNNs to tailor mirror descent to the underlying geometry
of the optimization manifold.

» Converges when the iterations are ‘reasonably’ extended beyond the
training regime.

» Forward-backward inconsistency can introduce instability for later
iterations.

> Extending the iterations turns out to be stable for LMD +
momentum.

» Closed form expression for VMg for an ICNN My?

» Extension to stochastic MD for efficiency

> Extension to non-convex problems (e.g., training a deep neural net)
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Further reading

Learned Mirror Descent:

» Data-Driven Mirror Descent with Input-Convex Neural Networks.
SIAM Journal on Mathematics of Data Science (SIMODS), 2023

» Robust Data-Driven Accelerated Mirror Descent. ICASSP 2023

Stochastic Deep Unrolling:

» Accelerating Deep Unrolling Networks via Dimensionality Reduction
arXiv:2208.14784

Plug-and-Play Quasi-Newton:

» Provably Convergent Plug-and-Play Quasi-Newton Methods
arXiv:2303.07271
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