Towards Provable, Efficient and Robust Data-Driven Optimization

Junqi Tang

Joint work with: **Hong Ye Tan**, Subhadip Mukherjee, Andreas Hauptmann, Carola-Bibiane Schönlieb

School of Mathematics, University of Birmingham, UK

Workshop on Recent Advances in Iterative Reconstruction, 22 May, 2023

Learning to optimize (L2O)

This talk is based on our works:

- ▶ Data-Driven Mirror Descent with Input-Convex Neural Networks. SIAM Journal on Mathematics of Data Science (SIMODS), 2023
- ▶ Robust Data-Driven Accelerated Mirror Descent, ICASSP 2023

In this line of works, we propose new L2O paradigms based on mirror descent.

Large-scale optimization problems $\min_{x \in \mathcal{X}} f(x)$ are ubiquitous in machine learning, data science, computational imaging, \cdots

Example: Empirical risk minimization in machine learning

► Training a prediction function via empirical risk minimization

$$x^\star \in \arg\min_{x \in \mathbb{R}^d} f(x) := \underbrace{\frac{1}{n} \sum_{i=1}^n l(b_i, h(a_i, x))}_{\text{Data fidelity}} + \underbrace{\lambda g(x)}_{\text{regularization}},$$

(SVM , kernel methods, deep neural networks, etc):

Example in inverse problems

► Tomographic medical imaging (CT, MRI, PET...):

$$b = Ax^{\dagger} + noise,$$

estimate x^{\dagger} via solving:

$$x^\star \in \arg\min_{x \in \mathbb{R}^d} f(x) := \underbrace{\frac{1}{n} \sum_{i=1}^n l(b_i, a_i^T x)}_{\text{Data fidelity}} + \underbrace{\lambda g(x)}_{\text{regularization}},$$

Large-scale optimization

- ► The number of data-sample *n* and dimension *d* can be huge in modern data science applications.
 - leading to significant computational challenges for optimization algorithms!

Optimal algorithms for convex composite finite-sum optimization

- ▶ Recall our generic objective: $f(x) := \frac{1}{n} \sum_{i=1}^{n} l_i(x) + \lambda g(x)$
- ightharpoonup F(x) is convex and each f_i has L-lipschitz continous gradient.

$$\|\nabla l_i(x) - \nabla l_i(y)\|_2 \le L\|x - y\|_2$$

▶ Optimal algorithms – SGD with variance-reduction + momentum acceleration¹ achieves worse-case optimal convergence.

To achieve
$$\mathbb{E}[f(x^t)] - f(x^\star) \le \epsilon$$
, $O(n + \sqrt{\frac{nL}{\epsilon}})$ gradient evaluation is needed.

Matching the lower bound $\Omega(n+\sqrt{rac{nL}{\epsilon}})$ [Woodworth&Srebro, NeurlPS'16]

¹Representative examples of optimal SGD methods: Katyusha [Allen-Zhu, STOC'17], MiG [Zhou et al, ICML'18], Varag [Lan et al, NeurlPS'19]...

What optimization algorithms have missed out...

Real-world data is highly structured!!!!!

What optimization algorithms have missed out...

Real-world data is highly structured!!!!!

If we take a wavelet transform, we can see that at least 90% of coefficients are nearly zeros.

What optimization algorithms have missed out...

Real-world data is highly structured!!!!!

If we take the gradient of an image, we can see that around 95% of coefficients are nearly zeros.

The Limitations of Classical Algorithmic Design Paradigms

The current paradigms in large-scale optimization focuses on generic algorithms for wide classes,

▶ ignoring the intrinsic low-dimensional structure of the problem

- ▶ ignoring the data structure/distribution in specific applications
- may lead to suboptimal practical performances
 Hand-crafting specialized algorithms for every narrow subclass is impractical.

Learning to optimize (L2O)

- ► Classical paradigm: given a generic class of optimization problem, design an efficient algorithm.
- ▶ L2O paradigm: given random instances of problems from a target task distribution, learn a solution algorithm to solve novel random instances from the same task distribution.

Objective: Combine machine learning with optimization to obtain better solutions faster, with provable convergence rates!

Background on mirror descent (MD)

Gradient descent (GD): $x_{k+1} = x_k - t_k \nabla f(x_k)$

$$x_{k+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^n} \left\{ \langle x, \nabla f(x_k) \rangle + \frac{1}{2t_k} \|x - x_k\|_2^2 \right\}$$

Mirror descent (MD):

$$x_{k+1} = \underset{x \in \mathbb{R}^n}{\min} \left\{ \langle x, \nabla f(x_k) \rangle + \frac{1}{t_k} B_{\Phi}(x, x_k) \right\}$$

- $ightharpoonup \Phi$ is strongly convex, continuously differentiable (mirror potential).
- ▶ Bregman distance: $B_{\Phi}(x,y) = \Phi(x) \Phi(y) \langle \nabla \Phi(y), x y \rangle$.
- ▶ Convex conjugate $\Phi^*(u) = \sup_{x \in \mathcal{X}} \{\langle u, x \rangle \Phi(x) \}$, satisfies $\nabla \Phi^* = (\nabla \Phi)^{-1}$.
- ▶ MD update: $y_k = \nabla \Phi(x_k) t_k \nabla f(x_k), \ x_{k+1} = \nabla \Phi^*(y_k).$

Parameterizing the mirror potential Φ

- ightharpoonup Parameterize Φ using an input-convex neural network (ICNN): M_{θ}
- ightharpoonup Architecture of M_{θ} :

$$\begin{split} z_0(x) &= 0 \\ z_{i+1}(x) &= \varphi_i \left(B_i \left(z_i(x) \right) + W_i(x) + b_i \right), i = 0, 1, \cdots, L-1 \\ M_\theta(x) &= \operatorname{AvgPool} \left(z_L(x) \right), \ \theta = \left(B_i, W_i, b_i \right)_{i=0}^{L-1} \end{split}$$

- ▶ $W_i: x \mapsto W_i(x)$ convex, B_i : conv2D layers with ≥ 0 weights
- φ_i : point-wise convex and monotonically non-decreasing (e.g., relu/leaky_relu).

ICNN architecture

- ▶ The construction is recursive, where each $z_i(x)$ is a vector whose elements are convex functions of the input x.
- ▶ The construction uses the following two properties:
 - 1. $\sum_i w_i u_i(x)$ is convex in convex in x if each u_i is convex and $w_i \geq 0$.
 - 2. $\varphi \circ u$ is convex if both u and φ are convex and φ is monotonically-increasing.

Main challenges

- ▶ Recall that MD needs both Φ and Φ^* .
- If Φ is modeled using an ICNN, how does one compute/approximate the gradient of Φ^* ?
- We use another network M_{ϑ} to approximate Φ^* , and then enforce $\nabla M_{\vartheta}^* = (\nabla M_{\theta})^{-1}$ using a soft penalty during training.
- ▶ No longer have an exact MD algorithm, so can we quantify the regret w.r.t. the approximation error? Yes!

Regret of approximate MD

- ▶ Exact MD: $x_{k+1} = \nabla \Phi^* \left(\nabla \Phi(x_k) t_k \nabla f(x_k) \right)$
- ▶ Approximate MD: $\tilde{x}_{k+1} = \widetilde{\nabla \Phi}^* (\nabla \Phi(x_k) t_k \nabla f(x_k))$

Regret Bound for approximate MD: Suppose f is μ -strongly convex and Φ is a mirror potential with strong convexity parameter σ . Let $\{\tilde{x}_k\}_{k=0}^\infty$ be some sequence in $\mathcal{X}\subseteq\mathbb{R}^n$, and $\{x_k\}_{k=1}^\infty$ be the corresponding exact MD iterates. We have the following regret bound:

$$\begin{split} \sum_{k=1}^K t_k(f(\tilde{x}_k) - f(x^*)) &\leq B(x^*, \tilde{x}_1) + \sum_{k=1}^K \left[\frac{t_k^2}{\sigma} \|\nabla f(\tilde{x}_k)\|_*^2 \right. \\ &+ \left. \left(\frac{1}{2t_k\mu} + \frac{1}{\sigma}\right) \underbrace{\|\nabla \Phi(\tilde{x}_{k+1}) - \nabla \Phi(x_{k+1})\|_*^2}_{\text{approximation error } \delta_{k+1}} \right] \end{split}$$

$$\delta_k = \|\nabla \Phi(\tilde{x}_k) - \nabla \Phi(x_k)\|_*^2 = \left\| \left(\nabla \Phi \circ \widetilde{\nabla \Phi}^* - \operatorname{Id} \right) (y_k) \right\|_*^2,$$

where $y_k := \nabla \Phi(x_k) - t_k \nabla f(x_k)$.

Training objective

▶ Parameterizing the solution operator via unrolling:

$$\tilde{x}_{k+1} = \nabla M_{\vartheta}^* (\nabla M_{\theta}(\tilde{x}_k) - t_k \nabla f(\tilde{x}_k)), \ k = 0, 1, 2, \cdots, N - 1.$$

► Training loss:

$$L(\theta, \theta) = \mathbb{E}_{f \in \mathcal{F}, \tilde{x}_0} \left[\sum_{k=1}^{N} f(\tilde{x}_k) + s_k \left\| (\nabla M_{\theta}^* \circ \nabla M_{\theta} - \mathsf{Id})(\tilde{x}_k) \right\| \right]$$

- Two-fold goal: decrease in the target objective + ensure forward-backward consistency.
- ightharpoonup We set $s_k = s$ for all k, and then increase s in every epoch.

A couple of concrete examples

► Support vector machine (SVM):

$$\underset{x=(\mathbf{w},b)}{\min} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \sum_{i \in \mathcal{I}} \max(0, 1 - y_i(\mathbf{w}^{\top} \phi_i + b))$$

$$\mathcal{F} = \left\{ f_{\mathcal{I}}(\mathbf{w}, b) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \sum_{i \in \mathcal{I}} \max(0, 1 - y_i(\mathbf{w}^{\top} \phi_i + b)) \right\}.$$

- lacktriangle Each instance of f depends on the set $\mathcal I$ of feature-target pairs.
- ► Image Inpainting:

$$\overline{ \min_{x} \frac{1}{2} ||Ax - y||_{2}^{2} + \lambda ||\nabla x||_{1} }$$

$$\mathcal{F} = \left\{ f(x) = \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|\nabla x\|_1 : \text{noisy images } y \right\}.$$

Numerical results

Toy example: least squares in \mathbb{R}^2

$$\min_{x \in \mathbb{R}^2} \|Wx - b\|_2^2, \ W = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \mathcal{F} = \{ f_b(x) = \|Wx - b\|_2^2 : b \in \mathbb{R}^2 \}$$

- ▶ Theoretically optimal mirror map: $\Phi(x) = \frac{1}{2}x^{\top}(W^{\top}W)x$
- Our parameterization: $\Phi(x) = \frac{1}{2}x^{T}Ax$, A symmetric PD
- ▶ Learned MD (LMD) $\rightarrow \begin{pmatrix} 0.69 & 0.55 \\ 0.55 & 0.69 \end{pmatrix}$, nearly $\propto W^\top W = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$

SVM training

- ▶ Data: MNIST, two-class SVM (digits 4 and 9)
- ▶ Trained on features $\phi: \mathbb{R}^{28^2} \mapsto \mathbb{R}^{50}$ extracted by a neural net trained with 97% accuracy
- ► Trained and tested on different folds
- Only 10 iterations are trained and then extended with various step-size multipliers

TV denoising (Gaussian noise)

- ▶ Data: STL-10 images
- \blacktriangleright LMD trained with noise-level $\sigma = 0.05$ for 10 iterations

$$\mathcal{F} = \left\{ f(x) = \frac{1}{2} \|x - y\|_2^2 + \lambda \|\nabla x\|_1 : \text{noisy images } y \right\}.$$

TV denoising (Gaussian noise)

- ▶ Data: STL-10 images
- ▶ LMD trained with noise-level $\sigma = 0.05$ for 10 iterations

TV Inpainting

- ▶ Data: STL-10 images
- \blacktriangleright LMD trained with 20% missing pixels and noise-level $\sigma=0.05$ for 10 iterations

$$\min_{x \in \mathcal{X}} \|Z \circ (x - y)\|_{\mathcal{X}}^2 + \lambda \|\nabla x\|_{1,\mathcal{X}},\tag{1}$$

TV Inpainting

Robustness

- ▶ How stable is this scheme past the learned number of iterations?
- ► Change of domain?
- ▶ Different forward operator?

Learned Accelerated MD

Algorithm 1: Learned Accelerated Mirror Descent (LAMD)

 $\begin{array}{l} \textbf{Data: Mirror potential } \Psi \text{, step-sizes } (t_k)_{k=1}^N > 0 \text{, parameter } r \geq 3 \\ \text{Initialize } \tilde{x}^{(0)} = x_0, \tilde{z}^{(0)} = x_0. \\ \textbf{for } 1 \leq k \leq N \textbf{ do} \\ & \lambda_k = \frac{r}{r+k}. \\ & x^{(k+1)} = \lambda_k \tilde{z}^{(k)} + (1-\lambda_k) \tilde{x}^{(k)} \\ & \tilde{z}^{(k+1)} = \nabla M_{\theta}^* (\nabla M_{\theta}(\tilde{z}^{(k+1)}) - \frac{kr}{t_k} \nabla f(x^{(k+1)})) \\ & \tilde{x}^{(k+1)} = x^{(k+1)} - \gamma t_k \nabla f(x^{(k+1)}) \end{array}$

end

▶ Rates: AMD $\mathcal{O}(1/k^2)$, MD $\mathcal{O}(1/\sqrt{k})$

Experiment setup

- Train to denoise noisy ellipse phantoms
 - Ray transform is applied and 10% Gaussian noise added to get noisy sinograms
 - ▶ FBP is applied to noisy sinograms to get noisy ellipse phantoms
- Denoise using TV regularization

$$\min_{x} \|x - y\|^2 + \lambda \|\nabla x\|_1$$

Left: ground truth. Right: noisy phantoms.

LMD and LMD+momentum (LAMD) for CT

- ▶ Denoising FBP images: $\mathcal{F} = \left\{ f(x) = \frac{1}{2} \|x y\|_2^2 + \lambda \|\nabla x\|_1 \right\}.$
- ► Trained LMD on ellipse phantoms, where *y* is FBP with parallel-beam projection.

Long-term evolution of LMD and LAMD (beyond ${\cal N}=10$ that they were trained for) with various step-size extensions.

Generalizability of the learned mirror maps

Do the learned mirror maps generalize to out-of-distribution problems? Yes, but subject to an appropriate extension of the LMD and LAMD (learned accelerated MD) iterations.

LAMD (i.e., learned MD with momentum) has better long-term stability, and the mirror maps generalize reasonably well to a similar problem class.

Generalizability of the learned mirror maps

▶ Do the learned mirror maps generalize to out-of-distribution problems? Yes, but subject to an appropriate extension of the LMD and LAMD (learned accelerated MD) iterations.

► LAMD (i.e., learned MD with momentum) has better long-term stability, and the mirror maps generalize reasonably well to a similar problem class.

Summary and outlook

- Can use ICNNs to tailor mirror descent to the underlying geometry of the optimization manifold.
- Converges when the iterations are 'reasonably' extended beyond the training regime.
- Forward-backward inconsistency can introduce instability for later iterations.
 - Extending the iterations turns out to be stable for LMD + momentum.
 - ▶ Closed form expression for ∇M_{θ}^* for an ICNN M_{θ} ?
- Extension to stochastic MD for efficiency
- Extension to non-convex problems (e.g., training a deep neural net)

Further reading

Learned Mirror Descent:

- Data-Driven Mirror Descent with Input-Convex Neural Networks. SIAM Journal on Mathematics of Data Science (SIMODS), 2023
- Robust Data-Driven Accelerated Mirror Descent. ICASSP 2023

Stochastic Deep Unrolling:

 Accelerating Deep Unrolling Networks via Dimensionality Reduction arXiv:2208.14784

Plug-and-Play Quasi-Newton:

► Provably Convergent Plug-and-Play Quasi-Newton Methods arXiv:2303.07271