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Learning to optimize (L2O)

This talk is based on our works:

▶ Data-Driven Mirror Descent with Input-Convex Neural Networks.
SIAM Journal on Mathematics of Data Science (SIMODS), 2023

▶ Robust Data-Driven Accelerated Mirror Descent. ICASSP 2023

In this line of works, we propose new L2O paradigms based on mirror
descent.
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Introduction

▶ Large-scale optimization problems min
x∈X

f(x) are ubiquitous in

machine learning, data science, computational imaging, · · ·
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Introduction
Example: Empirical risk minimization in machine learning

▶ Training a prediction function via empirical risk minimization

x⋆ ∈ arg min
x∈Rd

f(x) :=
1

n

n∑
i=1

l(bi, h(ai, x))︸ ︷︷ ︸
Data fidelity

+ λg(x)︸ ︷︷ ︸
regularization

,

(SVM , kernel methods, deep neural networks, etc):
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Introduction
Example in inverse problems

▶ Tomographic medical imaging (CT, MRI, PET...):

b = Ax† + noise,

estimate x† via solving:

x⋆ ∈ arg min
x∈Rd

f(x) :=
1

n

n∑
i=1

l(bi, a
T
i x)︸ ︷︷ ︸

Data fidelity

+ λg(x)︸ ︷︷ ︸
regularization

,

measurements (b) Solution (x⋆)
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Introduction
Large-scale optimization

▶ The number of data-sample n and dimension d can be huge in
modern data science applications.
– leading to significant computational challenges for optimization algorithms!
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Introduction
Optimal algorithms for convex composite finite-sum optimization

▶ Recall our generic objective: f(x) := 1
n

∑n
i=1 li(x) + λg(x)

▶ F (x) is convex and each fi has L-lipschitz continous gradient.

∥∇li(x)−∇li(y)∥2 ≤ L∥x− y∥2

▶ Optimal algorithms – SGD with variance-reduction + momentum
acceleration1 achieves worse-case optimal convergence.

To achieve E[f(xt)]−f(x⋆) ≤ ϵ, O(n+
√

nL
ϵ ) gradient evaluation

is needed.

Matching the lower bound Ω(n+
√

nL
ϵ ) [Woodworth&Srebro, NeurIPS’16]

1
Representative examples of optimal SGD methods: Katyusha [Allen-Zhu, STOC’17], MiG [Zhou et al, ICML’18],Varag [Lan et al,

NeurIPS’19]...
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What optimization algorithms have missed out...

Real-world data is highly structured!!!!!
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What optimization algorithms have missed out...

Real-world data is highly structured!!!!!

If we take a wavelet transform, we can see that at least 90% of
coefficients are nearly zeros.
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What optimization algorithms have missed out...

Real-world data is highly structured!!!!!

If we take the gradient of an image, we can see that around 95% of
coefficients are nearly zeros.
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The Limitations of Classical Algorithmic Design Paradigms

The current paradigms in large-scale optimization focuses on generic
algorithms for wide classes,

▶ ignoring the intrinsic low-dimensional structure of the problem

 ▶ ignoring the data structure/distribution in specific applications

– may lead to suboptimal practical performances
Hand-crafting specialized algorithms for every narrow subclass is
impractical.
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Learning to optimize (L2O)

▶ Classical paradigm: given a generic class of optimization problem,
design an efficient algorithm.

▶ L2O paradigm: given random instances of problems from a target
task distribution, learn a solution algorithm to solve novel random
instances from the same task distribution.

Objective: Combine machine learning with optimization to obtain better
solutions faster, with provable convergence rates!
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Background on mirror descent (MD)

Gradient descent (GD): xk+1 = xk − tk∇f(xk)

xk+1 = argmin
x∈Rn

{
⟨x,∇f(xk)⟩+

1

2tk
∥x− xk∥22

}

Mirror descent (MD):

xk+1 = argmin
x∈Rn

{
⟨x,∇f(xk)⟩+

1

tk
BΦ(x, xk)

}

▶ Φ is strongly convex, continuously differentiable (mirror potential).

▶ Bregman distance: BΦ(x, y) = Φ(x)− Φ(y)− ⟨∇Φ(y), x− y⟩.

▶ Convex conjugate Φ∗(u) = supx∈X {⟨u, x⟩ − Φ(x)}, satisfies
∇Φ∗ = (∇Φ)−1.

▶ MD update: yk = ∇Φ(xk)− tk∇f(xk), xk+1 = ∇Φ∗(yk).
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Parameterizing the mirror potential Φ

▶ Parameterize Φ using an input-convex neural network (ICNN): Mθ

▶ Architecture of Mθ:

z0(x) = 0

zi+1(x) = φi (Bi (zi(x)) +Wi(x) + bi) , i = 0, 1, · · · , L− 1

Mθ(x) = AvgPool (zL(x)) , θ = (Bi,Wi, bi)
L−1
i=0

▶ Wi : x 7→ Wi(x) convex, Bi: conv2D layers with ≥ 0 weights

▶ φi: point-wise convex and monotonically non-decreasing (e.g.,
relu/leaky relu).
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ICNN architecture

▶ The construction is recursive, where each zi(x) is a vector whose
elements are convex functions of the input x.

▶ The construction uses the following two properties:

1.
∑

i wiui(x) is convex in convex in x if each ui is convex and wi ≥ 0.

2. φ ◦ u is convex if both u and φ are convex and φ is
monotonically-increasing.
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Main challenges

▶ Recall that MD needs both Φ and Φ∗.

▶ If Φ is modeled using an ICNN, how does one compute/approximate
the gradient of Φ∗?

▶ We use another network Mϑ to approximate Φ∗, and then enforce
∇M∗

ϑ = (∇Mθ)
−1 using a soft penalty during training.

▶ No longer have an exact MD algorithm, so can we quantify the
regret w.r.t. the approximation error? Yes!
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Regret of approximate MD
▶ Exact MD: xk+1 = ∇Φ∗ (∇Φ(xk)− tk∇f(xk))

▶ Approximate MD: x̃k+1 = ∇̃Φ
∗
(∇Φ(xk)− tk∇f(xk))

Regret Bound for approximate MD: Suppose f is µ-strongly convex and
Φ is a mirror potential with strong convexity parameter σ. Let {x̃k}∞k=0

be some sequence in X ⊆ Rn, and {xk}∞k=1 be the corresponding exact
MD iterates. We have the following regret bound:

K∑
k=1

tk(f(x̃k)− f(x∗)) ≤ B(x∗, x̃1) +
K∑

k=1

[
t2k
σ
∥∇f(x̃k)∥2∗

+

(
1

2tkµ
+

1

σ

)
∥∇Φ(x̃k+1)−∇Φ(xk+1)∥2∗︸ ︷︷ ︸

approximation error δk+1



δk = ∥∇Φ(x̃k)−∇Φ(xk)∥2∗ =
∥∥∥(∇Φ ◦ ∇̃Φ

∗
− Id

)
(yk)

∥∥∥2
∗
,

where yk := ∇Φ(xk)− tk∇f(xk).
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Training objective

▶ Parameterizing the solution operator via unrolling:

x̃k+1 = ∇M∗
ϑ(∇Mθ(x̃k)− tk∇f(x̃k)), k = 0, 1, 2, · · · , N − 1.

▶ Training loss:

L(θ, ϑ) = Ef∈F,x̃0

[
N∑

k=1

f(x̃k) + sk ∥(∇M∗
ϑ ◦ ∇Mθ − Id)(x̃k)∥

]

▶ Two-fold goal: decrease in the target objective + ensure
forward-backward consistency.

▶ We set sk = s for all k, and then increase s in every epoch.
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A couple of concrete examples

▶ Support vector machine (SVM):

min
x=(w,b)

1

2
w⊤w + C

∑
i∈I

max(0, 1− yi(w
⊤ϕi + b))

F =

{
fI(w, b) =

1

2
w⊤w + C

∑
i∈I

max(0, 1− yi(w
⊤ϕi + b))

}
.

▶ Each instance of f depends on the set I of feature-target pairs.

▶ Image Inpainting:

min
x

1

2
∥Ax− y∥22 + λ∥∇x∥1

F =

{
f(x) =

1

2
∥Ax− y∥22 + λ∥∇x∥1 : noisy images y

}
.
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Numerical results
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Toy example: least squares in R2

min
x∈R2

∥Wx− b∥22, W =

(
2 1
1 2

)
,F = {fb(x) = ∥Wx− b∥22 : b ∈ R2}

▶ Theoretically optimal mirror map: Φ(x) = 1
2x

⊤(W⊤W )x

▶ Our parameterization: Φ(x) = 1
2x

⊤Ax, A symmetric PD

▶ Learned MD (LMD) →
(
0.69 0.55
0.55 0.69

)
, nearly ∝ W⊤W =

(
5 4
4 5

)
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SVM training
▶ Data: MNIST, two-class SVM (digits 4 and 9)

▶ Trained on features ϕ : R282 7→ R50 extracted by a neural net
trained with 97% accuracy

▶ Trained and tested on different folds

▶ Only 10 iterations are trained and then extended with various
step-size multipliers
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TV denoising (Gaussian noise)

▶ Data: STL-10 images

▶ LMD trained with noise-level σ = 0.05 for 10 iterations

F =

{
f(x) =

1

2
∥x− y∥22 + λ∥∇x∥1 : noisy images y

}
.
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TV denoising (Gaussian noise)
▶ Data: STL-10 images

▶ LMD trained with noise-level σ = 0.05 for 10 iterations
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TV Inpainting

▶ Data: STL-10 images

▶ LMD trained with 20% missing pixels and noise-level σ = 0.05 for
10 iterations

min
x∈X

∥Z ◦ (x− y)∥2X + λ∥∇x∥1,X , (1)
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TV Inpainting
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Robustness

▶ How stable is this scheme past the learned number of iterations?

▶ Change of domain?

▶ Different forward operator?
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Learned Accelerated MD

Algorithm 1: Learned Accelerated Mirror Descent (LAMD)

Data: Mirror potential Ψ, step-sizes (tk)
N
k=1 > 0, parameter r ≥ 3

Initialize x̃(0) = x0, z̃
(0) = x0.

for 1 ≤ k ≤ N do
λk = r

r+k .

x(k+1) = λkz̃
(k) + (1− λk)x̃

(k)

z̃(k+1) = ∇M∗
θ (∇Mθ(z̃

(k+1))− kr
tk
∇f(x(k+1)))

x̃(k+1) = x(k+1) − γtk∇f(x(k+1))

end

▶ Rates: AMD O(1/k2), MD O(1/
√
k)
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Experiment setup

▶ Train to denoise noisy ellipse phantoms
▶ Ray transform is applied and 10% Gaussian noise added to get noisy

sinograms
▶ FBP is applied to noisy sinograms to get noisy ellipse phantoms

▶ Denoise using TV regularization

min
x

∥x− y∥2 + λ∥∇x∥1

Left: ground truth. Right: noisy phantoms.
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LMD and LMD+momentum (LAMD) for CT

▶ Denoising FBP images: F =
{
f(x) = 1

2∥x− y∥22 + λ∥∇x∥1
}
.

▶ Trained LMD on ellipse phantoms, where y is FBP with
parallel-beam projection.
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Long-term evolution of LMD and LAMD (beyond N = 10 that they were
trained for) with various step-size extensions.
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Generalizability of the learned mirror maps

▶ Do the learned mirror maps generalize to out-of-distribution problems? Yes, but

subject to an appropriate extension of the LMD and LAMD (learned accelerated

MD) iterations.

(l) LAMD on LoDoPaB Dataset
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(m) Fan-beam FBP-denoising

▶ LAMD (i.e., learned MD with momentum) has better long-term stability, and

the mirror maps generalize reasonably well to a similar problem class.
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Generalizability of the learned mirror maps
▶ Do the learned mirror maps generalize to out-of-distribution

problems? Yes, but subject to an appropriate extension of the LMD
and LAMD (learned accelerated MD) iterations.
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(n) ellipse phantom, fan-beam FBP denoising
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(o) LoDoPaB, fan-beam FBP denoising

▶ LAMD (i.e., learned MD with momentum) has better long-term
stability, and the mirror maps generalize reasonably well to a similar
problem class.
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Summary and outlook

▶ Can use ICNNs to tailor mirror descent to the underlying geometry
of the optimization manifold.

▶ Converges when the iterations are ‘reasonably’ extended beyond the
training regime.

▶ Forward-backward inconsistency can introduce instability for later
iterations.

▶ Extending the iterations turns out to be stable for LMD +
momentum.

▶ Closed form expression for ∇M∗
θ for an ICNN Mθ?

▶ Extension to stochastic MD for efficiency

▶ Extension to non-convex problems (e.g., training a deep neural net)
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Further reading

Learned Mirror Descent:

▶ Data-Driven Mirror Descent with Input-Convex Neural Networks.
SIAM Journal on Mathematics of Data Science (SIMODS), 2023

▶ Robust Data-Driven Accelerated Mirror Descent. ICASSP 2023

Stochastic Deep Unrolling:

▶ Accelerating Deep Unrolling Networks via Dimensionality Reduction
arXiv:2208.14784

Plug-and-Play Quasi-Newton:

▶ Provably Convergent Plug-and-Play Quasi-Newton Methods
arXiv:2303.07271
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