Regularization by inexact Krylov methods

Silvia Gazzola

S.Gazzola@bath.ac.uk

Joint work M. Sabaté Landman

Department of Mathematical Sciences

Workshop on Recent Advances in Iterative Reconstruction UCL – may 22-23, 2023

Setting the stage: linear inverse problem

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - b\|_2, \quad \text{where} \quad Ax_{\mathrm{true}} + e = b$$

and

$$b \in \mathbb{R}^m$$
 available observations or measurements $x_{\mathrm{true}} \in \mathbb{R}^n$ unknown quantity of interest $A \in \mathbb{R}^{m \times n}$ available ill-conditioned matrix models forward process $e \in \mathbb{R}^m$ additive Gaussian white noise

Setting the stage: linear inverse problem

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - b\|_2$$
, where $A\mathbf{x}_{\mathrm{true}} + e = b$

and

 $b \in \mathbb{R}^m$ available observations or measurements $x_{\mathrm{true}} \in \mathbb{R}^n$ unknown quantity of interest $A \in \mathbb{R}^{m \times n}$ available ill-conditioned matrix models forward process $e \in \mathbb{R}^m$ additive Gaussian white noise

Example: image deblurring

Here m = n = 65536.

Setting the stage: separable nonlinear inverse problem

Solution of

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^p} \|A(y)x - b\|_2$$
, where $A(y_{\text{true}})x_{\text{true}} + e = b$

and

 $b \in \mathbb{R}^m$ $x_{\text{true}} \in \mathbb{R}^n$ $y_{\text{true}} \in \mathbb{R}^p$ $A(y) \in \mathbb{R}^{m \times n}$ $e \in \mathbb{R}^m$

available observations or measurements unknown quantity of interest unknown parameters defining A, $p \ll n$ ill-conditioned matrix models forward process additive Gaussian white noise

Example: image (semi-)blind deblurring, with Gaussian PSF P(y)

$$[P(y)]_{i,j} = c(\sigma_1, \sigma_2, \rho) \exp \left(-\frac{1}{2} \begin{bmatrix} i - \chi_1 \\ j - \chi_2 \end{bmatrix}^T \begin{bmatrix} \sigma_1^2 & \rho^2 \\ \rho^2 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} i - \chi_1 \\ j - \chi_2 \end{bmatrix}\right)$$

Note: $\sigma_1^2 \sigma_2^2 - \rho^4 > 0$; $\sum_{i,i=1}^N [P(y)]_{i,j} = 1$.

Here $y = [\sigma_1, \sigma_2, \rho]^T \in \mathbb{R}^3$. For illustrations: $y_{\text{true}} = [2.5, 2.5, 0]^T$.

Introduction

Dealing with ill-posedness: introducing regularization

- For (large-scale) linear inverse problems
 - early termination of Krylov methods (LSQR,CGLS...), applied to

$$\min_{x} \|Ax - b\| \qquad \text{(from now on, } \| \cdot \| = \| \cdot \|_2\text{)}$$

combining variational (e.g., Tikhonov) regularization methods

$$z_{\lambda} = \arg\min_{z \in \mathbb{R}^n} \|Az - r_0\|^2 + \lambda^2 \|z\|^2, \quad \text{where} \quad egin{array}{ll} r_0 &= b - Ax_0 \\ x_{\lambda} &= x_0 + z_{\lambda} \end{array}$$

and Krylov methods... equivalently

- first project then regularize
- first regularize then project

Main ingredient (for hybrid solvers): shift-invariance of Krylov subspaces

$$\mathcal{K}_k(A^TA, A^Tr_0) = \mathcal{K}_k(A^TA + \lambda^2I, A^Tr_0)$$

See papers by: Bjorck, Buccini, Calvetti, Chung, Donatelli, Espanol, Fenu, G., Hansen, Hanke, Hnetynkova, Hochstenbach, Kilmer, Morigi, Nagy, Novati, O'Leary, Renaut, Reichel, Sgallari

Dealing with ill-posedness: introducing regularization

■ For (large-scale) separable nonlinear inverse problems

$$(z_{\lambda}, y^*) = \arg\min_{z \in \mathbb{R}^n, y \in \mathbb{R}^p} \|A(y)z - r_0\|^2 + \lambda^2 \|z\|^2, \quad \text{where} \quad \begin{array}{rcl} r_0 & = & b - A(y)x_0 \\ x_{\lambda} & = & x_0 + z_{\lambda} \end{array}$$

Trick: exploit separability!

In particular: apply the variable projection method (inner-outer iterations)

- implicitly 'eliminates' z (hybrid solver)
 - y is updated using a NLLS solver (e.g., Gauss–Newton)

[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]

Introduction

Dealing with ill-posedness: introducing regularization

■ For (large-scale) separable nonlinear inverse problems

$$(z_{\lambda}, y^*) = \arg\min_{z \in \mathbb{R}^n, y \in \mathbb{R}^p} \|A(y)z - r_0\|^2 + \lambda^2 \|z\|^2, \quad \text{where} \quad egin{array}{ll} r_0 &= & b - A(y)x_0 \\ x_{\lambda} &= & x_0 + z_{\lambda} \end{array}$$

Trick: exploit separability!

In particular: apply the variable projection method (inner-outer iterations)

- implicitly 'eliminates' z (hybrid solver)
- y is updated using a NLLS solver (e.g., Gauss-Newton)

[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]

In this talk:

- introduce inexact Krylov methods (iLSQR, iCGLS) for regularization
- introducing hybrid iLSQR and hybrid iCGLS for regularization
- adopting inexact solvers within the variable projection method (application to blind deblurring)

Transitioning from exact to inexact Golub-Kahan

Inspired by: [Simoncini and Szyld, SIMAX, 2003], [Gaaf and Simoncini, Appl.Num.Math., 2017]

exact (GKB)

inexact (iGK)

'iteration-wise'

$$\begin{array}{lll} u_1 = r_0/\beta, \ v_1 = A^T u_1/\alpha_1 & u_1 = r_0/\beta, \ v_1 = (A + \digamma_1)^T u_1/[L_{k+1}]_{1,1} \\ u_{i+1} = (Av_i - \alpha_i u_i)/\beta_{i+1} & u_{i+1} = (I - U_i U_i^T)(A + \digamma_i)v_i/[M_k]_{i+1,i+1} \\ v_{i+1} = (A^T u_{i+1} - \beta_{i+1} v_i)/\alpha_{i+1} & v_{i+1} = (I - V_i V_i^T)(A + \digamma_{i+1})^T u_{i+1}/[L_{k+1}]_{i+1,i+1} \end{array}$$

'factorization-wise'

$$\begin{array}{lll} AV_k &=& U_{k+1}\bar{B}_k & [(A+\mbox{E_1})v_1,...,(A+\mbox{E_k})v_k] &=& U_{k+1}M_k \\ A^TU_{k+1} &=& V_{k+1}B_{k+1}^T & \left[(A+\mbox{F_1})^Tu_1,...,(A+\mbox{F_{k+1}})^Tu_{k+1}\right] &=& V_{k+1}L_{k+1}^T \\ \mbox{where $V_{k+1}=[v_1,\ldots,v_{k+1}]$,} & U_{k+1}=[u_1,\ldots,u_{k+1}] \end{array}$$

'compactly factorization-wise'

$$\begin{array}{lll} (A + \mathcal{E}_{k}) V_{k} & = & U_{k+1} M_{k} \\ (A + \mathcal{F}_{k+1})^{T} U_{k+1} & = & V_{k+1} L_{k+1}^{T} \\ \text{where} & \mathcal{E}_{k} & = & \sum_{i=1}^{k} E_{i} v_{i} v_{i}^{T} \\ \mathcal{F}_{k+1} & = & \sum_{i=1}^{k+1} (u_{i} u_{i}^{T}) \mathcal{F}_{i} \end{array}$$

links with symmetric Lanczos

$$A^TAV_k = V_{k+1}B_{k+1}^T\bar{B}_k$$

$$(A^TA + \mathcal{F}_{k+1}^TA + A^T\mathcal{E}_k + \mathcal{F}_{k+1}^T\mathcal{E}_k)V_k = V_{k+1}L_{k+1}^TM_k$$

6/18

Transitioning from exact to inexact linear system solvers

```
Inspired by: [Simoncini and Szyld, SIMAX, 2003] x_k = x_0 + z_k = x_0 + V_k s_k GKB: AV_k = U_{k+1}\bar{B}_k, ... iGK: (A + \mathcal{E}_k)V_k = U_{k+1}M_k, ... inexact LSQR (iLSQR) q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}\bar{B}_k) = \mathcal{R}(AV_k)} \|q - r_0\| \quad q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\| equivalently s_k = \arg\min_{s \in \mathbb{R}^k} \|\bar{B}_k s - \beta e_1\| does not minimize the true residual! equivalently (\bar{B}_{\nu}^T \bar{B}_k) s_k = \bar{B}_{\nu}^T (\beta e_1) (M_{\nu}^T M_k) s_k = M_{\nu}^T (\beta e_1)
```

Transitioning from exact to inexact linear system solvers

```
Inspired by: [Simoncini and Szyld, SIMAX, 2003]
  x_k = x_0 + z_k = x_0 + V_k s_k
  GKB: AV_k = U_{k+1}\bar{B}_k....
                                                                            iGK: (A + \mathcal{E}_k)V_k = U_{k+1}M_k, ...
  LSQR
                                                                            inexact LSQR (iLSQR)
  q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}\bar{B}_k) = \mathcal{R}(AV_k)} \|q - r_0\| \qquad q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\|
                                                               equivalently
  s_k = \operatorname{arg\,min}_{s \in \mathbb{R}^k} \|\bar{B}_k s - \beta e_1\|
                                                                            s_k = \operatorname{arg\,min}_{s \in \mathbb{R}^k} \| M_k s - \beta e_1 \|
                                                                            does not minimize the true residual!
                                                               equivalently
                                                                            (M_{\nu}^T M_k) s_k = M_{\nu}^T (\beta e_1)
  (\bar{B}_{\iota}^T\bar{B}_{k})s_k = \bar{B}_{\iota}^T(\beta e_1)
  equivalently, CGLS
   V_{\nu}^{T}(A^{T}A)V_{k}s_{k}=V_{\nu}^{T}A^{T}r_{0}=\bar{B}_{\nu}^{T}\beta e_{1}
  eauivalently
  q_k \in \mathcal{R}(V_{k+1}\bar{T}_k), A^T r_0 - q_k \perp \mathcal{R}(V_k)
```

Transitioning from exact to inexact linear system solvers

```
Inspired by: [Simoncini and Szyld, SIMAX, 2003]
  x_{k} = x_{0} + z_{k} = x_{0} + V_{k} s_{k}
  GKB: AV_k = U_{k+1}\bar{B}_k....
                                                                               iGK: (A + \mathcal{E}_k)V_k = U_{k+1}M_k, ...
  LSQR
                                                                               inexact LSQR (iLSQR)
  q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}\bar{B}_k) = \mathcal{R}(AV_k)} \|q - r_0\| \qquad q_k = \arg\min_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\|
                                                                 equivalently
  s_k = \operatorname{arg\,min}_{s \in \mathbb{R}^k} \|\bar{B}_k s - \beta e_1\|
                                                                               s_k = \operatorname{arg\,min}_{s \in \mathbb{R}^k} \| M_k s - \beta e_1 \|
                                                                               does not minimize the true residual!
                                                                 equivalently
                                                                               (M_{\nu}^T M_k) s_k = M_{\nu}^T (\beta e_1)
  (\bar{B}_{\iota}^T\bar{B}_{k})s_k = \bar{B}_{\iota}^T(\beta e_1)
  equivalently, CGLS
   V_{\nu}^{T}(A^{T}A)V_{k}s_{k}=V_{\nu}^{T}A^{T}r_{0}=\bar{B}_{\nu}^{T}\beta e_{1}
                                                                               inexact CGLS (iCGLS)
  eauivalently
  q_k \in \mathcal{R}(V_{k+1}\bar{T}_k), A^T r_0 - q_k \perp \mathcal{R}(V_k)
                                                                               q_k \in \mathcal{R}(V_{k+1}\widehat{H}_k), (A + \mathcal{F}_{k+1})^T r_0 - q_k \perp \mathcal{R}(V_k)
                                                                               not orthogonal to the true NE residual!
                                                                               eauivalently
                                                                               V_{k}^{T}(\widehat{A} + \widehat{\mathcal{E}}_{k})V_{k}s_{k} = V_{k}^{T}(A + \mathcal{F}_{k+1})^{T}r_{0}
                                                                               eauivalently
                                                                               \bar{L}_{i}^{T}M_{k}s_{k}=[\bar{L}_{k}]_{1} {}_{1}\beta e_{1}
```

Transitioning from inexact linear system solvers to inexact hybrid solvers

Recall, iGK:
$$(A + \mathcal{E}_k)V_k = U_{k+1}M_k$$
, $(A + \mathcal{F}_{k+1})^T U_{k+1} = V_{k+1}L_{k+1}^T$
 $x_{\lambda,k} = x_0 + z_{\lambda,k} = x_0 + V_k s_{\lambda,k}$
 λ fixed

inexact LSQR (iLSQR)

$$q_k = \mathop{\mathsf{arg\,min}}_{q \in \mathcal{R}(\mathit{U}_{k+1}\mathit{M}_k)} \|q - \mathit{r}_0\|$$

inexact hybrid LSQR (hybrid-iLSQR)

$$q_{\lambda,k} = \operatorname{arg\,min}_{q \in \mathcal{R}(W_{\lambda,k})} \left\| q - \begin{bmatrix} r_0 \\ 0 \end{bmatrix} \right\|,$$

$$W_{\lambda,k} = \left[(U_{k+1}M_k)^T, \lambda(V_k)^T \right]^T$$

inexact CGLS (iCGLS)

$$q_k \in \mathcal{R}(V_{k+1}\overline{T}_k), \ A^T r_0 - q_k \perp \mathcal{R}(V_k)$$

inexact hybrid CGLS (hybrid-iCGLS)

$$q_{\lambda,k} \in \mathcal{R}(W_{\lambda,k}) = \mathcal{R}(V_{k+1}(\widehat{H}_k + \lambda^2 \overline{I})), (A + \mathcal{F}_{k+1})^T r_0 - q_{\lambda,k} \perp \mathcal{R}(V_k)$$

Transitioning from inexact linear system solvers to inexact hybrid solvers

Recall, iGK:
$$(A + \mathcal{E}_k)V_k = U_{k+1}M_k$$
, $(A + \mathcal{F}_{k+1})^T U_{k+1} = V_{k+1}L_{k+1}^T$
 $x_{\lambda,k} = x_0 + z_{\lambda,k} = x_0 + V_k s_{\lambda,k}$
 λ fixed

inexact LSQR (iLSQR)

$$q_k = \mathop{\mathsf{arg\,min}}_{q \in \mathcal{R}(U_{k+1}M_k)} \|q - r_0\|$$

inexact CGLS (iCGLS)

$$q_k \in \mathcal{R}(V_{k+1}\bar{T}_k), A^T r_0 - q_k \perp \mathcal{R}(V_k)$$

inexact hybrid LSQR (hybrid-iLSQR)

$$q_{\lambda,k} = \underset{q \in \mathcal{R}(W_{\lambda,k})}{\mathsf{arg\,min}_{q \in \mathcal{R}(W_{\lambda,k})}} \left\| q - \left[egin{array}{c} r_0 \\ 0 \end{array}
ight]
ight\|,$$
 $W_{\lambda,k} = \left[(U_{k+1}M_k)^T, \lambda (V_k)^T \right]^T$

equivalently

$$\begin{array}{rcl} s_{\lambda,k} & = & \arg\min_{s \in \mathbb{R}^k} \|M_k s - \beta e_1\|^2 + \lambda^2 \|s\|^2 \\ & = & (M_k^T M_k + \lambda^2 I)^{-1} M_k^T (\beta e_1) \end{array}$$

inexact hybrid CGLS (hybrid-iCGLS)

$$\begin{aligned} q_{\lambda,k} &\in \mathcal{R}(W_{\lambda,k}) = \mathcal{R}(V_{k+1}(\widehat{H}_k + \lambda^2 \overline{I})), \\ &(A + \mathcal{F}_{k+1})^T r_0 - q_{\lambda,k} \perp \mathcal{R}(V_k) \\ &equivalently \\ &(\overline{L}_k^T M_k + \lambda^2 I) s_{\lambda,k} = [\overline{L}_k]_{1,1} \beta e_1 \end{aligned}$$

Transitioning from inexact linear system solvers to inexact hybrid solvers

Recall, iGK:
$$(A + \mathcal{E}_k)V_k = U_{k+1}M_k$$
, $(A + \mathcal{F}_{k+1})^T U_{k+1} = V_{k+1}L_{k+1}^T$
 $x_{\lambda,k} = x_0 + z_{\lambda,k} = x_0 + V_k s_{\lambda,k}$

 λ fixed: shift-invariance only under some conditions!

inexact LSQR (iLSQR)

$$q_k = \mathop{\mathsf{arg\,min}}_{q \in \mathcal{R}(\mathit{U}_{k+1}\mathit{M}_k)} \|q - \mathit{r}_0\|$$

inexact CGLS (iCGLS)

$$q_k \in \mathcal{R}(V_{k+1}\bar{T}_k), A^T r_0 - q_k \perp \mathcal{R}(V_k)$$

inexact hybrid LSQR (hybrid-iLSQR)

$$egin{aligned} q_{\lambda,k} &=& \mathop{\mathsf{arg\,min}}_{q \in \mathcal{R}(W_{\lambda,k})} \left\| q - \left[egin{array}{c} r_0 \ 0 \end{array}
ight]
ight\|, \ &W_{\lambda,k} &= \left[\left(U_{k+1} M_k
ight)^T, \lambda (V_k)^T
ight]^T \end{aligned}$$

equivalently

$$s_{\lambda,k} = \underset{s \in \mathbb{R}^k}{\arg \min_{s \in \mathbb{R}^k} \|M_k s - \beta e_1\|^2 + \lambda^2 \|s\|^2}$$
$$= (M_k^T M_k + \lambda^2 I)^{-1} M_k^T (\beta e_1)$$

inexact hybrid CGLS (hybrid-iCGLS)

$$q_{\lambda,k} \in \mathcal{R}(W_{\lambda,k}) = \mathcal{R}(V_{k+1}(\widehat{H}_k + \lambda^2 \overline{I})),$$

 $(A + \mathcal{F}_{k+1})^T r_0 - q_{\lambda,k} \perp \mathcal{R}(V_k)$
equivalently
 $(\overline{L}_k^T M_k + \lambda^2 I) s_{\lambda,k} = [\overline{L}_k]_{1,1} \beta e_1$

When are inexact solvers 'meaningful'?

Inspired by: [Simoncini and Szvld. SIMAX, 2003]

Depends on the relations between exact (i.e., r^e , $r^e_{\lambda,k}$) and inexact (i.e., r, $r_{\lambda,k}$) residuals, keeping in mind that:

- there is ill-posedness: r^e may not be small
- there is regularization: $r_{\lambda,k}^e$ may not be small

(i.e.,
$$||r_{\lambda,k}^e|| = (||Az_{\text{true}} - r_0^e||^2 + \lambda^2 ||z_{\text{true}}||^2)^{1/2} = (||e||^2 + \lambda^2 ||z_{\text{true}}||^2)^{1/2})$$

When are inexact solvers 'meaningful'?

Inspired by: [Simoncini and Szyld, SIMAX, 2003]

Depends on the relations between exact (i.e., r^e , $r_{\lambda,k}^e$) and inexact (i.e., r, $r_{\lambda,k}$) residuals, keeping in mind that:

- \blacksquare there is ill-posedness: r^e may not be small
- there is regularization: $r_{\lambda,k}^e$ may not be small

(i.e.,
$$||r_{\lambda,k}^e|| = (||Az_{\text{true}} - r_0^e||^2 + \lambda^2 ||z_{\text{true}}||^2)^{1/2} = (||e||^2 + \lambda^2 ||z_{\text{true}}||^2)^{1/2})$$

Focusing on:

- iLSQR: $||r_k^e|| \le ||r_k|| + ||E_0x_0|| + \sum_{l=1}^k ||E_l|| |[s_k]_l|$
- hybrid-iLSQR, fixed λ

$$||r_{\lambda,k}^e|| \le ||r_{\lambda,k}|| + ||E_0x_0|| + \sum_{l=1}^k ||E_l|| ||[s_{\lambda,k}]_l||$$

'A priori' bounds, ϵ desired accuracy:

- iLSQR: $||E_j|| \le \frac{\sigma_k(M_k)}{k} \frac{1}{||r_{j-1}||} \epsilon, j = 1, ..., k$
- hybrid-iLSQR, fixed λ

$$||E_j|| \le \frac{(\sigma_k (M_k^T M_k + \lambda^2 I))^{1/2}}{k} \frac{1}{||r_{\lambda_j-1}||} \epsilon, \quad j = 1, \dots, k$$

satellite blind deblurring example, with $\lambda=0.5$

Recap on separable NLLS and VarPro

[Golub and Pereyra, Inverse Problems, 2003] [Chung and Nagy, SISC, 2010]

■ Problem to be solved

$$z_{\lambda} = \underset{z \in \mathbb{R}^{n}, y \in \mathbb{R}^{p}}{\min} g(z, y), \text{ where } \begin{aligned} g(z, y) &= \|F(z, y)\|^{2} \\ F(z, y) &= \widetilde{A}_{\lambda}(y)z - \widetilde{r}_{0} \\ \widetilde{A}_{\lambda}(y) &= [A^{T}(y), \lambda I]^{T}, \ \widetilde{r}_{0} = [r_{0}^{T}, 0^{T}]^{T} \\ x_{\lambda} &= x_{0} + z_{\lambda} \end{aligned}$$

Consider the reduced cost functional

$$h(y) := g(z_{\lambda}(y), y), \quad \text{where} \quad \begin{aligned} z_{\lambda}(y) &= & \arg\min_{z \in \mathbb{R}^{n}} g(z, y) \\ &= & (A^{T}(y)A(y) + \lambda^{2}I)^{-1}A^{T}(y)r_{0} \end{aligned}$$

$$\text{Take } x_{\lambda}(y) = x_{0} + z_{\lambda}(y)$$

Apply Gauss-Newton to minimize the reduced cost functional

$$y_l = y_{l-1} + \gamma_l d_{l-1}$$
 (setting the steplength γ_l)

Note that

$$d_{l-1} = \arg\min_{d} \|\widehat{J}_h d - r_{l-1}\|, \ J_h = \left[\begin{array}{c} \frac{d(A(y)z_{\lambda})}{dy} \\ 0 \end{array}\right] = \left[\begin{array}{c} \widehat{J}_h \\ 0 \end{array}\right], \ J_h^T F(z_{\lambda}, y) = \nabla_y g(z_{\lambda}, y)$$

(computationally convenient analytical expression of $d(A(y)z_{\lambda})/dy$ for blind deblurring)

[Chung and Nagy, SISC, 2010]

```
Algorithm
                    Variable projection with Gauss-Newton and hybrid LSQR solver
 1: Choose initial guesses x_0 and y_0
    for l = 1, 2, \ldots until a stopping criterion is satisfied do
        for k = 1, 2, \dots until a stopping criterion is satisfied do
 3:
            Expand \mathcal{K}_k(A(y_{l-1})^T A(y_{l-1}), A(y_{l-1})^T r_0) using GKB
 4:
            Compute x_{\lambda,k} solving the projected problem with adaptive choice of \lambda
 5:
        end for
 6:
        Compute the residual r_l = b - A(y_{l-1})x_{\lambda,k}
 7:
        Compute d_l = \arg\min_d \|\widehat{J}_h d - r_l\|
 8:
        Update y_l = y_{l-1} + \gamma_l d_l (setting the steplength \gamma_l)
 9:
        Update x_0
10:
11: end for
```

Algorithm Variable projection with Gauss-Newton and hybrid LSQR solver

- 1: Choose initial guesses x_0 and y_0
- 2: **for** $l = 1, 2, \ldots$ until a stopping criterion is satisfied **do**
- 3: **for** k = 1, 2, ... until a stopping criterion is satisfied **do**
- 4: Expand $\mathcal{K}_k(A(y_{l-1})^T A(y_{l-1}), A(y_{l-1})^T r_0)$ using GKB
- 5: Compute $x_{\lambda,k}$ solving the projected problem with adaptive choice of λ
- 6: end for
- 7: Compute the residual $r_l = b A(y_{l-1})x_{\lambda,k}$
- 8: Compute $d_l = \arg\min_d \|\widehat{J}_h d r_l\|$
- 9: Update $y_l = y_{l-1} + \gamma_l d_l$ (setting the steplength γ_l)
- 10: Update x_0
- 11: end for

Algorithm Variable projection

Variable projection with Gauss-Newton and $\frac{hybrid-iLSQR}{}$ solver

Choose initial guesses x_0 and y_0

for
$$k = 1, 2, ...$$

do

Expand the approximation subspace $\mathcal{R}(V_k)$ using $A(y_{k-1})$ and iGK

Compute $x_{\lambda,k}$ solving the projected problem with adaptive choice of λ

Compute the residual $r_k = b - A(y_{k-1})x_{\lambda,k}$

Compute $d_k = \arg\min_d \|\widehat{J}_h d - r_k\|$

Update $y_k = y_{k-1} + \gamma_k d_k$ (setting the steplength γ_k)

end for

```
Algorithm
                   Variable projection with Gauss-Newton and hybrid-iLSQR solver
 1: Choose initial guesses x_0 and y_0; set an accuracy \varepsilon
    for l = 1, 2, \ldots until a stopping criterion is satisfied do
        for k = 1, 2, \ldots until inexactness exceeds the bound \varepsilon do
 3:
            Expand the approximation subspace \mathcal{R}(V_k) using A(y_{k-1}) and iGK
 4:
            Compute x_{\lambda,k} solving the projected problem with adaptive choice of \lambda
 5:
            Compute the residual r_k = b - A(y_{k-1})x_{\lambda,k}
 6:
            Compute d_k = \arg\min_d \|\widehat{J}_h d - r_k\|
 7:
            Update y_k = y_{k-1} + \gamma_k d_k (setting the steplength \gamma_k)
 8:
        end for
 9:
10:
        Update x_0; take y_0 = y_k
11: end for
```

A few details

Defining inexactness, with some pragmatism:

consider as exact matrix the latest computed approximation of A(y), i.e., after j-1 iterations, $A(y_{i-1})=A(y_{j-1})+{\color{red} E_i^j}$, where ${\color{red} E_i^j}:=A(y_{i-1})-A(y_{j-1})$, iGK being expressed as

$$(A(y_{j-1}) + \mathcal{E}_{j}^{j})V_{j} = U_{j+1}M_{j}, \qquad \mathcal{E}_{j}^{j} = \sum_{i=1}^{j} \mathbf{E}_{i}^{j} v_{i} v_{i}^{T}$$

$$(A(y_{i-1}) + \mathcal{F}_{i+1}^{j})^{T} U_{i+1} = V_{i+1} L_{i+1}^{T}, \qquad \mathcal{F}_{i+1}^{j} = \sum_{i=1}^{j+1} \mathbf{E}_{i}^{j} u_{i} u_{i}^{T} \mathbf{E}_{i}^{j} ,$$

■ Setting the Gauss-Newton stepsize:

$$\begin{aligned} y_j &= y_{j-1} + \gamma_j d_{j-1} \,, \quad \text{where} \quad \gamma_j &= \arg\min_{\gamma \geq 0} g\left(z_\lambda(y_{j-1}), y_{j-1} + \gamma d_{j-1}\right) \\ \text{We get} &\qquad \|\widetilde{A}_\lambda(y_j) z_{\lambda,j+1} - \widetilde{r}_0\| &\leq & \|\widetilde{A}_\lambda(y_{j-1}) z_{\lambda,j} - \widetilde{r}_0\| + 2\widetilde{\varepsilon} \,, \\ \text{instead of} &\qquad \|\widetilde{A}_\lambda(y_i) z_{\lambda,j+1} - \widetilde{r}_0\| &\leq & \|\widetilde{A}_\lambda(y_{i-1}) z_{\lambda,j} - \widetilde{r}_0\| \end{aligned}$$

satellite blind deblurring example, with $y_{\rm true} = [2.5, 2.5, 0]^T$, $\lambda = 0.5$

satellite blind deblurring example, with $y_{\mathrm{true}} = [2.5, 2.5, 0]^{\mathsf{T}}$, $\lambda = 0.5$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

satellite blind deblurring example, with $y_{\mathrm{true}} = [2.5, 2.5, 0]^T$, $\lambda = 0.5$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

Hybrid-iLSQR (it. 30, RRE_x 0.5819)

Algorithm 4.1 (it. 577, RRE $_{x}$ 0.2454)

Algorithm 4.2 (it. 79, RRE_x 0.2474)

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

Another example

cameraman blind deblurring example, with $y_{\text{true}} = [3, 4, 0.5]^T$, $y_0 = [5, 6, 1]^T$

exact

Algorithm 4.1 (it. 927, RRE_{*} 0.1286) (it. 82, RRE_{*} 0.1219)

Algorithm 4.2

(it. 927, RRE_v 0.0679)

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

Another example

cameraman blind deblurring example, with $y_{\mathrm{true}} = [3, 4, 0.5]^T$, $y_0 = [5, 6, 1]^T$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

Another example

cameraman blind deblurring example, with $y_{\text{true}} = [3, 4, 0.5]^T$, $y_0 = [5, 6, 1]^T$

Algorithm 4.1: [Chung and Nagy, SISC, 2010]; Algorithm 4.2: new solver

- The story so far:
 - introduced the new (hybrid) iLSQR and iCGLS methods
 - applications to separable NLLS problems arising in blind deblurring, handled with a variable projection approach

- The story so far:
 - introduced the new (hybrid) iLSQR and iCGLS methods
 - applications to separable NLLS problems arising in blind deblurring, handled with a variable projection approach
- Looking ahead:
 - inexact solvers other than iLSQR and iCGLS methods other than standard formTikhonov
 - nonlinear separable inverse problems other than blind deblurring (MRI, CT, radar, superresolution, instrumental calibration, ML tasks)

■ The story so far:

- introduced the new (hybrid) iLSQR and iCGLS methods
- applications to separable NLLS problems arising in blind deblurring, handled with a variable projection approach

■ Looking ahead:

- inexact solvers other than iLSQR and iCGLS methods other than standard formTikhonov
- nonlinear separable inverse problems other than blind deblurring (MRI, CT, radar, superresolution, instrumental calibration, ML tasks)

Thanks for your attention!

Silvia Gazzola and Malena Sabaté Landman Regularization by inexact Krylov methods with applications to blind deblurring SIAM J. Matrix Anal. Appl. 42, 2021