

# Random descent for least squares functionals

Dirk Lorenz, joint work with Felix Schneppe and Lionel Tondji, May 22, 2023

Consider simple, plain least squares

$$\min_{\mathbf{v} \in \mathbf{R}^d} \frac{1}{2} \|A\mathbf{v} - b\|^2, \qquad A \in L(\mathbf{R}^d, \mathbf{R}^m), b \in \mathbf{R}^m$$

Consider simple, plain least squares

$$\min_{\mathbf{v} \in \mathbf{R}^d} \frac{1}{2} \|A\mathbf{v} - b\|^2, \qquad A \in L(\mathbf{R}^d, \mathbf{R}^m), b \in \mathbf{R}^m$$

but under the following assumptions:

1. There is only an implementation available, that produces Ax for any x

Consider simple, plain least squares

$$\min_{\mathbf{v} \in \mathbf{R}^d} \frac{1}{2} \|A\mathbf{v} - b\|^2, \qquad A \in L(\mathbf{R}^d, \mathbf{R}^m), b \in \mathbf{R}^m$$

- 1. There is only an implementation available, that produces Ax for any x
- 2. There is no implementation of the adjoint/transpose available

Consider simple, plain least squares

$$\min_{\mathbf{v} \in \mathbf{R}^d} \frac{1}{2} \|A\mathbf{v} - b\|^2, \qquad A \in L(\mathbf{R}^d, \mathbf{R}^m), b \in \mathbf{R}^m$$

- 1. There is only an implementation available, that produces Ax for any x
- 2. There is no implementation of the adjoint/transpose available
- 3. Automatic differentiation does not work for that implementation (otherwise could get  $A^Ty$  as derivative of  $\langle y, Ax \rangle$  w.r.t. x).

Consider simple, plain least squares

$$\min_{\mathbf{v}\in\mathbf{R}^d}\frac{1}{2}\|A\mathbf{v}-b\|^2, \qquad A\in L(\mathbf{R}^d,\mathbf{R}^m), b\in\mathbf{R}^m$$

- 1. There is only an implementation available, that produces Ax for any x
- 2. There is no implementation of the adjoint/transpose available
- 3. Automatic differentiation does not work for that implementation (otherwise could get  $A^Ty$  as derivative of  $\langle y, Ax \rangle$  w.r.t. x).
- 4. Only a very small number of vectors of size either *d* or *m* can be stored (i.e. no way to approximate a larger portion of matrix representation of *A*)

Consider simple, plain least squares

$$\min_{\mathbf{v} \in \mathbf{R}^d} \frac{1}{2} ||A\mathbf{v} - b||^2, \qquad A \in L(\mathbf{R}^d, \mathbf{R}^m), b \in \mathbf{R}^m$$

- 1. There is only an implementation available, that produces Ax for any x
- 2. There is no implementation of the adjoint/transpose available
- 3. Automatic differentiation does not work for that implementation (otherwise could get  $A^Ty$  as derivative of  $\langle y, Ax \rangle$  w.r.t. x).
- 4. Only a very small number of vectors of size either *d* or *m* can be stored (i.e. no way to approximate a larger portion of matrix representation of *A*)

Consider simple, plain least squares

$$\min_{\mathbf{v} \in \mathbf{R}^d} \frac{1}{2} \|A\mathbf{v} - b\|^2, \qquad A \in L(\mathbf{R}^d, \mathbf{R}^m), b \in \mathbf{R}^m$$

but under the following assumptions:

- 1. There is only an implementation available, that produces Ax for any x
- 2. There is no implementation of the adjoint/transpose available
- 3. Automatic differentiation does not work for that implementation (otherwise could get  $A^Ty$  as derivative of  $\langle y, Ax \rangle$  w.r.t. x).
- 4. Only a very small number of vectors of size either *d* or *m* can be stored (i.e. no way to approximate a larger portion of matrix representation of *A*)

What can we still do?



# **Adjoint sampling**

#### Lemma

If  $x \in \mathbf{R}^d$  is a random vector with  $\mathbf{E}(xx^T) = I_d$ , then

$$\mathsf{E}(\langle \mathsf{A}\mathsf{v}-\mathsf{b},\mathsf{A}\mathsf{x}\rangle\mathsf{x})=\mathsf{A}^\mathsf{T}(\mathsf{A}\mathsf{v}-\mathsf{b}),$$

i.e.  $\langle Av - b, Ax \rangle x$  is an unbiased estimate for  $\nabla (\frac{1}{2} ||Av - b||^2)$ .

Hence, we can do stochastic gradient descent:

$$v^{k+1} = v^k - \tau_k \langle Av^k - b, Ax \rangle x$$
 for  $x \sim \mathcal{D}$ 

# Isotropic random vectors

Random vector  $\mathbf{x} \sim \mathcal{D}$  is isotropic if  $\mathbf{E}(\mathbf{x}\mathbf{x}^{\mathsf{T}}) = \mathbf{I}_d$ 

- Random unit vectors:  $\mathbf{x} \sim \mathsf{Unif}(\sqrt{d}S^{d-1})$
- Standard normal vectors  $x \sim \mathcal{N}(0, I_d)$
- Random coordinate vectors  $\mathbf{P}(x = \sqrt{d}e_k) = \frac{1}{d}$
- Rademacher vectors  $\mathbf{P}(x_k = \pm 1) = \frac{1}{2}$  independently



Necessarily:

$$\mathbf{E}(\|\mathbf{x}\|^2) = \mathbf{E}(\mathbf{x}^T \mathbf{x}) = \mathbf{E}(\operatorname{trace}(\mathbf{x}^T \mathbf{x})) = \mathbf{E}(\operatorname{trace}(\mathbf{x}\mathbf{x}^T)) = \operatorname{trace}(\mathbf{E}(\mathbf{x}\mathbf{x}^T)) = \operatorname{trace}(\mathbf{I}_d) = d$$



# Stochastic gradient descent with adjoint sampling (SGDAS)

```
Random isotropic x (\mathbf{E}(xx^T) = I_d) which also fulfills \mathbf{E}(xx^T\|x\|^2) = cI_d
Initialize v^0 = 0 \in \mathbf{R}^d, k = 0, \tau > 0
while not stopped do
obtain random vector x \in \mathbf{R}^d
update v^{k+1} = v^k - \tau \langle Av^k - b, Ax \rangle x
end while
```

#### **Theorem**

Let  $A\hat{\nu} = b$  and  $(\nu^k)_k$  generated by SGDAS with  $0 < \tau < 2/(c\|A\|^2)$ . Then

$$\mathbf{E}(\|\mathbf{v}^{k+1} - \hat{\mathbf{v}}\|^2) \le \lambda^k \|\mathbf{v}^0 - \hat{\mathbf{v}}\|^2$$

for 
$$\lambda = \|I - \tau A^T A (2I - \tau c A^T A)\|$$
. Esp.  $\tau = \frac{2}{c} \frac{1}{\lambda_{\max} + \lambda_{\min}}$  gives  $\lambda = 1 - \frac{4\kappa(A)}{c(\kappa(A) + 1)^2}$ 



# Convergence of residuals

#### **Theorem**

Let  $(v^k)_k$  be generated by SGDAS with  $\tau_k = \tau = \frac{1}{c||A||^2}$ . Then it holds that

$$\min_{0 \le k \le N-1} \mathbf{E}(\|A^{T}(A\nu^{k} - b)\|^{2}) \le \frac{c\|A\|^{2}\|b\|^{2}}{N}.$$

#### Theorem

With 
$$\beta = 1 - \tau \sigma_{\min}(A)^2 (2 - \tau c ||A||^2)$$
 it holds that

$$\mathbf{E}(\|A\nu^{k+1}-b\|^2) \le \beta^{k+1}\|A\nu^0-b\|^2.$$

$$\tau = 1/(c||A||^2)$$
 gives  $\beta = 1 - \frac{\sigma_{\min}(A)^2}{c||A||^2}$ 



### **Inconsistent systems**

#### Theorem

Let  $A\hat{\nu}=b$  and  $(\nu^k)_k$  be generated by SGDAS with  $0<\tau<\frac{2}{c\|A\|^2}$ , and rhs  $\tilde{b}=b+r$  with r=r'+r'' with  $r'\in rg(A)$  and  $r''\in rg(A)^{\perp}$ . Then

$$\begin{split} \mathbf{E}(\|\mathbf{v}^{k+1} - \hat{\mathbf{v}}\|^2) & \leq \left(\frac{1+\lambda}{2}\right)^{k+1} \|\mathbf{v}^0 - \hat{\mathbf{v}}\|^2 \\ & + \tau^2 \frac{2\left((1-\lambda)c + 2\|I - \tau c A^\mathsf{T} A\|^2\right)}{(1-\lambda)^2} \|A^\mathsf{T} r'\|^2 \end{split}$$

Drawbacks of SGDAS:

- Very slow rate (note division by c; holds: c > d)
- Stepsize needs knowledge about ||A|| (how to calculate without using  $A^T$ ?)
- → Try linesearch



# Intermission: Calculating norms without adjoints

- 1. How to calculate ||A|| given our constraints?
- 2. Even more difficult: Assume that only routines for  $x \mapsto Ax$  and  $y \mapsto V^Ty$  available. How to calculate ||A V||?

# Intermission: Calculating norms without adjoints

- 1. How to calculate ||A|| given our constraints?
- 2. Even more difficult: Assume that only routines for  $x \mapsto Ax$  and  $y \mapsto V^Ty$  available. How to calculate ||A V||?
- For 1. use stochastic coordinate ascent to solve  $||A||^2 = \max_{\|\nu\|=1} ||A\nu||^2$  with adjoint sampling:

 $v^{k+1/2} = v^k + \tau_k \langle A v^k, A x \rangle x, \quad v^{k+1} = \frac{v^{k+1/2}}{\|v^{k+1/2}\|}$ 

Linesearch more difficult, but possible...

# Intermission: Calculating norms without adjoints

- 1. How to calculate ||A|| given our constraints?
- 2. Even more difficult: Assume that only routines for  $x \mapsto Ax$  and  $y \mapsto V^Ty$  available. How to calculate ||A V||?
- For 1. use stochastic coordinate ascent to solve  $||A||^2 = \max_{\|\nu\|=1} ||A\nu||^2$  with adjoint sampling:

$$u^{k+1/2} = v^k + \tau_k \langle A v^k, A x \rangle x, \quad v^{k+1} = \frac{v^{k+1/2}}{\|v^{k+1/2}\|}$$

- Linesearch more difficult, but possible...
- For 2. use stochastic gradient ascent to solve

$$\begin{split} \|A - V\| &= \max_{\|u\| = \|v\| = 1} \langle u, (A - V)v \rangle = \max_{\|u\| = \|v\| = 1} \left[ \langle u, Av \rangle - \langle V^T u, v \rangle \right] \text{ by } \\ v^{k+1/2} &= v^k + \tau_k \left( \langle u^k, Ax \rangle x - V^T u^k \right), \qquad u^{k+1/2} = u^k + \tau_k \left( Av^k - \langle V^T y, v^k \rangle y \right) \\ v^{k+1} &= \frac{v^{k+1/2}}{\|v^{k+1/2}\|}, \qquad \qquad u^{k+1} &= \frac{u^{k+1/2}}{\|u^{k+1/2}\|}, \end{split}$$

#### Random descent

#### Lemma

The minimum of  $\tau \mapsto \frac{1}{2} ||A(v^k + \tau x) - b||^2$  is attained at

$$\tau_k = \left\{ \begin{array}{cc} -\frac{\langle A\nu^k - b, Ax \rangle}{\|Ax\|^2} & Ax \neq 0, \\ 0 & Ax = 0. \end{array} \right.$$

Does need neither ||A|| nor  $A^T$ !

Gives random descent method (RD)

$$\nu^{k+1} = \nu^k - \frac{\langle A\nu^k - b, Ax \rangle}{\|Ax\|^2} x.$$

■ Similar ideas: Random pursuit [Stich, Muller, Gartner, 2013], [Nesterov, Spokoiny, 2017]



#### **Theorem**

Let  $v^k$  be generated by RD. Then it holds

$$\mathbf{E}(\|A\nu^{k-1}-b\|^2)=\|A\nu^k-b\|^2-\langle A^T(A\nu^k-b),\mathbf{E}\left(\frac{xx^T}{\|Ax\|^2}\right)(A^T(A\nu^k-b)\rangle.$$

Convergence hinges on the spectral properties of

$$\mathsf{M} := \mathsf{E}\left( rac{\mathsf{x}\mathsf{x}^\mathsf{T}}{\|\mathsf{A}\mathsf{x}\|^2} 
ight) \in \mathsf{R}^{d imes d}$$

(if exists!). Simple and bad estimate:

$$\frac{xx^T}{\|Ax\|^2} \ge \frac{1}{\|A\|^2} \frac{xx^T}{\|x\|^2} \rightsquigarrow M \succcurlyeq \frac{1}{d\|A\|^2} I_d.$$

Gives only

$$\mathsf{E}(\|A\nu^{k+1} - b\|^2) \le \left(1 - \frac{\sigma_{\min}(A)^2}{d\|A\|^2}\right) \|A\nu^k - b\|^2$$

# Better results for specific distributions:

#### Random coordinate vectors

- Gives randomized coordinate descent [Luenberger 1984, Leventhal, Lewis 2010]
- ho  $P(x = \sqrt{d}e_k) = \frac{1}{d}$ ,  $a_k = Ae_k$

$$M = \sum_{k=1}^{d} \frac{1}{d} \frac{e_k e_k^T}{\|a_k\|^2} = \frac{1}{d} \operatorname{diag}(\|a_1\|^{-2}, \dots, \|a_d\|^{-2}) \geqslant \frac{1}{d \max_k \|a_k\|^2} I_d,$$

Gives convergence

$$\mathsf{E}(\|\mathsf{A}\nu^{k+1} - b\|^2) \le \left(1 - \frac{\sigma_{\min}(\mathsf{A})^2}{d\max_k \|a_k\|^2}\right) \|\mathsf{A}\nu^k - b\|^2.$$

 $\max_k \|a_k\| \le \max_{\|x\|=1} \|Ax\| = \|A\| \rightsquigarrow \text{ better than general bound}$ 

■ Improved rate by choosing  $\mathbf{P}(x=\sqrt{d}e_k)=\frac{\|a_k\|^2}{\|A\|_E^2}$  (precompute  $\|A\|_F$ !) leads to

$$\mathbf{E}(\|A\nu^{k+1} - b\|^2) \le \left(1 - \frac{\sigma_{\min}(A)^2}{\|A\|^2}\right) \|A\nu^k - b\|^2$$
 [Leventhal, Lewis 2010]

# Better results for specific distributions: Standard normal vectors

• Here  $A^TA$  and M have same orthonormal eigenbasis  $(u_i)$  and the eigenvalues of M are

$$\begin{split} \mu_i &= \lambda_i(\mathsf{M}) = \mathsf{E}\left(\frac{\langle u_i, x \rangle}{\sum_{j=1}^d \lambda_j \langle u_j, x \rangle}\right) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbf{R}^d} \frac{z_i^2}{\lambda_1 z_1^2 + \dots + \lambda_d z_d^2} e^{-\|\mathbf{z}\|^2/2} \mathrm{d}\mathbf{z} \\ &\geq \frac{1}{2\|\mathbf{A}\|_F^2} \frac{\Gamma(d/2)}{\Gamma((d+1)/2)} \approx \frac{1}{2\sqrt{2d}\|\mathbf{A}\|_F^2} \end{split}$$

Gives convergence

$$\mathsf{E}(\|A \nu^{k+1} - b\|^2) \le \left(1 - \frac{\sigma_{\min}(A)^2}{2\sqrt{2d}\|A\|_F^2}\right) \|A \nu^k - b\|^2$$

## **Experiments for consistent systems**

- Comparison of SGDAS, RD (with Rademacher vectors), TFQMR and CGS.
- Stopped at relative tolerance of  $10^{-2}$  or after 10000 iterations.
- Random sparse matrices A with normally distributed entries and random solution vectors  $\hat{\nu}$  with normally distributed entries.

|                                 | $\frac{\ A\nu-b\ }{\ b\ }$ | v        | time (s) |        | $\frac{  A\nu-b  }{  b  }$ | v        | time (s) |
|---------------------------------|----------------------------|----------|----------|--------|----------------------------|----------|----------|
| SGDAS                           | 9.68e-01                   | 5.27e-01 | 8.67e-01 | SGDAS  | 8.72e-01                   | 1.91e+00 | 6.89e-01 |
| RD                              | 9.99e-03                   | 3.30e+01 | 3.76e-01 | RD     | 9.95e-03                   | 1.70e+01 | 2.77e-01 |
| TFQMR                           | 4.76e-02                   | 3.35e+01 | 4.76e-01 | TFQMR  | 2.15e+00                   | 2.37e+02 | 4.67e-01 |
| CGS                             | 9.99e-03                   | 3.30e+01 | 3.27e-04 | CGS    | 4.23e+01                   | 2.97e+03 | 7.52e-01 |
| (-) Cif A 200 + 1200 ditf A 0.1 |                            |          |          | (1) 6: |                            |          |          |

<sup>(</sup>a) Size of A:  $300 \times 1200$ , density of A: 0.1.



<sup>(</sup>b) Size of A:  $1200 \times 300$ , density of A: 0.1.

## **Experiments for consistent systems**

- Comparison of SGDAS, RD (with Rademacher vectors), TFQMR and CGS.
- Stopped at relative tolerance of  $10^{-5}$  or after 500000 iterations.
- Random sparse matrices A with normally distributed entries and random solution vectors  $\hat{\nu}$  with normally distributed entries.

|       | $\frac{\ A\nu-b\ }{\ b\ }$ | $\  \mathbf{v} \ $ | time (s) |       | $\frac{\ A\nu-b\ }{\ b\ }$ | $\  \nu \ $ | time (s) |
|-------|----------------------------|--------------------|----------|-------|----------------------------|-------------|----------|
| SGDAS | 1.16e-02                   | 1.07e+01           | 8.56e+00 | SGDAS | 9.45e-03                   | 1.05e+01    | 9.38e+00 |
| RD    | 1.00e-05                   | 1.10e+01           | 1.78e+00 | RD    | 9.99e-06                   | 1.07e+01    | 3.88e-01 |
| TFQMR | 1.03e+00                   | 1.23e+01           | 1.07e+01 | TFQMR | 5.41e-07                   | 6.60e+01    | 3.33e-02 |
| CGS   | 4.33e+17                   | 1.51e+22           | 1.34e+01 | CGS   | 4.67e-06                   | 6.60e+01    | 2.12e-02 |
|       |                            |                    |          |       | _                          |             |          |



(d) Size of A: 150  $\times$  100, density of A: 0.1.



# Convergence along singular vectors

- Consider  $b = A\hat{v} + \eta$  and let  $\{u_i\}$  be right singular vectors of A for singular values  $\sigma_i$
- Simple observation for the Landweber iteration with stepsize  $\omega$ :

$$\langle v^{k+1} - \hat{v}, u_i \rangle = (1 - \omega \sigma_i^2)^k \langle v^0 - \hat{v}, u_i \rangle + \frac{1 - (1 - \omega \sigma_i^2)^k}{\sigma_i} \langle \eta, u_i \rangle$$

 $\rightsquigarrow$  faster decay of  $\sigma_i$  is larger (Similar for Kaczmarz [Jia, Jin, Lu 2017], [Steinerberger 2021])

• For random descent with standard normal directions:

$$\mathbf{E}(\langle \mathbf{v}^{k+1} - \hat{\mathbf{v}}, u_i \rangle) = (1 - \mu_i \sigma_i^2)^k \langle \mathbf{v}^0 - \hat{\mathbf{v}}, u_i \rangle + \frac{1 - (1 - \mu_i \sigma_i^2)^k}{\sigma_i} \langle \eta, u_i \rangle$$

 $\rightsquigarrow$  even faster decay if  $\mu_i > 1/\omega$ 

• Random descent has advantage if  $v^0 - \hat{v}$  is rough and the  $\mu_i$ 's are large



# "Inverse integration"

$$A = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ \cdots \\ 1 \end{bmatrix}, d = 100$$

•  $||A||^{-2}\sigma_i^2$  (for Landweber) vs.  $\mu_i\sigma_i^2$  (for random descent)



Errors in higher singular modes decay way faster for random descent than for Landeweber

# "Inverse integration" with rough data



Convergence of error and residual:



Stop by Morozov: RD after 36.256 iterations with 5.4% error, Landweber after 22,045 iterations with 7.7% error



# **Extension to non-linear least squares**

- Consider  $F: \mathbf{R}^d \to \mathbf{R}^m$  and  $\min_{\mathbf{R}^d} \frac{1}{2} || F(v) b ||^2$ .
- Landweber methods is

$$v^{k+1} = v^k - \tau DF(v^k)^T (F(v^k) - b)$$

Needs transpose of derivative

Adjoint sampling/stochastic Landweber + finite difference approximation

$$\nu^{k+1} = \nu^k - \tau \langle F(\nu^k) - b, DF(\nu^k) x \rangle x \approx \nu^k - \tau \langle F(\nu^k) - b, F(\nu^k + x) - F(\nu^k) \rangle x$$

Only need forward evaluations of F!

ullet Related: Random search [Polyak, 1987]. Minimize  $\Phi$  by

$$\mathbf{v}^{k+1} = \mathbf{v}^k - rac{\gamma_k}{\alpha_k} \left[ \Phi(\mathbf{v}^k + \alpha_k \mathbf{u}) - \Phi(\mathbf{v}^k) \right] \mathbf{u}, \qquad \mathbf{u} \sim \mathsf{Unif}(\mathbf{S}^{d-1})$$

Converges for  $\gamma_k$  small enough and  $\alpha_k \to 0$ .



# A non-linear Hammerstein equation

- Consider  $F(\nu)(s) = \int\limits_0^1 |s-t|\nu(t)^3 dt$ , discretized to  $F: \mathbf{R}^d \to \mathbf{R}^d$ , d=200,  $\tau=0.5/d$ .
- Compare three variants:
  - Variant 1:  $v^{k+1} = v^k \tau \langle F(v^k) b, F(v^k + x) F(v^k) \rangle x$
  - Variant 2:  $v^{k+1} = v^k \langle F(v^k) b, F(v^k + \tau x) F(v^k) \rangle x$
  - Random search for  $\Phi(\nu) = \frac{1}{2} ||F(\nu) b||^2$ ,  $\gamma_k \equiv \gamma = 2$ ,  $\alpha_k = 0.99^k$



#### Conclusion

- Transpose-free solution of least squares problems is possible by random descent and adjoint sampling
- Random descent even competitive with other transpose free methods like TFQMR and CGS
- Choice of distributions of directions influences convergence speed
- Coordinate descent as special case
- Random descent has some advantage for ill-posed problems with rough solutions
- Possible extensions:
  - Proximal methods with adjoint sampling
  - Isotropic sampling works, but problem adapted distributions may by better

