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Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:

1. There is only an implementation available, that produces Ax for any x
2. There is no implementation of the adjoint/transpose available
3. Automatic differentiation does not work for that implementation (otherwise could get ATy

as derivative of ⟨y, Ax⟩ w.r.t. x).
4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to

approximate a larger portion of matrix representation of A)

What can we still do?
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Adjoint sampling

Lemma
If x ∈ Rd is a random vector with E(xxT) = Id, then

E(⟨Av− b, Ax⟩x) = AT(Av− b),

i.e. ⟨Av− b, Ax⟩x is an unbiased estimate for ∇( 1
2∥Av− b∥2).

Hence, we can do stochastic gradient descent:

vk+1 = vk − τk⟨Avk − b, Ax⟩x for x ∼ D
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Isotropic random vectors
Random vector x ∼ D is isotropic if E(xxT) = Id

Random unit vectors: x ∼ Unif(
√
dSd−1)

Standard normal vectors x ∼ N (0, Id)
Random coordinate vectors P(x =

√
dek) = 1

d
Rademacher vectors P(xk = ±1) = 1

2 independently

Necessarily:
E(∥x∥2) = E(xTx) = E(trace(xTx)) = E(trace(xxT)) = trace(E(xxT)) = trace(Id) = d
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Stochastic gradient descent with adjoint sampling (SGDAS)
Random isotropic x (E(xxT) = Id) which also fulfills E(xxT∥x∥2) = cId

Initialize v0 = 0 ∈ Rd, k = 0, τ > 0
while not stopped do

obtain random vector x ∈ Rd

update vk+1 = vk − τ⟨Avk − b, Ax⟩x
end while

Theorem

Let Av̂ = b and (vk)k generated by SGDAS with 0 < τ < 2/(c∥A∥2). Then

E(∥vk+1 − v̂∥2) ≤ λk∥v0 − v̂∥2

for λ = ∥I− τATA(2I− τcATA)∥. Esp. τ = 2
c

1
λmax+λmin

gives λ = 1 − 4κ(A)
c(κ(A)+1)2
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Convergence of residuals

Theorem

Let (vk)k be generated by SGDAS with τk = τ = 1
c∥A∥2 . Then it holds that

min
0≤k≤N−1

E(∥AT(Avk − b)∥2) ≤ c∥A∥2∥b∥2

N
.

Theorem

With β = 1 − τσmin(A)2(2 − τc∥A∥2) it holds that

E(∥Avk+1 − b∥2) ≤ βk+1∥Av0 − b∥2.

τ = 1/(c∥A∥2) gives β = 1 − σmin(A)2

c∥A∥2
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Inconsistent systems

Theorem

Let Av̂ = b and (vk)k be generated by SGDAS with 0 < τ < 2
c∥A∥2 , and rhs b̃ = b+ r with

r = r′ + r′′ with r′ ∈ rg(A) and r′′ ∈ rg(A)⊥. Then

E(∥vk+1 − v̂∥2) ≤
(

1 + λ

2

)k+1
∥v0 − v̂∥2

+ τ2 2
(
(1 − λ)c+ 2∥I− τcATA∥2)

(1 − λ)2 ∥ATr′∥2

Drawbacks of SGDAS:
Very slow rate (note division by c; holds: c > d)
Stepsize needs knowledge about ∥A∥ (how to calculate without using AT?)

⇝ Try linesearch
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Intermission: Calculating norms without adjoints
1. How to calculate ∥A∥ given our constraints?
2. Even more difficult: Assume that only routines for x 7→ Ax and y 7→ VTy available. How to

calculate ∥A− V∥?

For 1. use stochastic coordinate ascent to solve ∥A∥2 = max∥v∥=1 ∥Av∥2 with adjoint
sampling:

vk+1/2 = vk + τk⟨Avk, Ax⟩x, vk+1 = vk+1/2

∥vk+1/2∥

Linesearch more difficult, but possible…
For 2. use stochastic gradient ascent to solve
∥A− V∥ = max

∥u∥=∥v∥=1
⟨u, (A− V)v⟩ = max

∥u∥=∥v∥=1

[
⟨u, Av⟩ − ⟨VTu, v⟩

]
by

vk+1/2 = vk + τk

(
⟨uk, Ax⟩x− VTuk

)
, uk+1/2 = uk + τk

(
Avk − ⟨VTy, vk⟩y

)
vk+1 = vk+1/2

∥vk+1/2∥ , uk+1 = uk+1/2

∥uk+1/2∥ ,
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Random descent

Lemma

The minimum of τ 7→ 1
2∥A(vk + τx)− b∥2 is attained at

τk =

{
− ⟨Avk−b,Ax⟩

∥Ax∥2 Ax ̸= 0,
0 Ax = 0.

Does need neither ∥A∥ nor AT !
Gives random descent method (RD)

vk+1 = vk − ⟨Avk − b, Ax⟩
∥Ax∥2 x.

Similar ideas: Random pursuit [Stich, Muller, Gartner, 2013], [Nesterov, Spokoiny, 2017]
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Theorem

Let vk be generated by RD. Then it holds

E(∥Avk−1 − b∥2) = ∥Avk − b∥2 − ⟨AT(Avk − b), E
(

xxT
∥Ax∥2

)
(AT(Avk − b)⟩.

Convergence hinges on the spectral properties of

M := E
(

xxT
∥Ax∥2

)
∈ Rd×d

(if exists!). Simple and bad estimate:

xxT

∥Ax∥2 ≥ 1
∥A∥2

xxT

∥x∥2 ⇝ M ≽
1

d∥A∥2 Id.

Gives only

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

d∥A∥2

)
∥Avk − b∥2

s
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Better results for specific distributions:
Random coordinate vectors

Gives randomized coordinate descent [Luenberger 1984, Leventhal, Lewis 2010]
P(x =

√
dek) = 1

d , ak = Aek

M =
d

∑
k=1

1
d

ekeTk
∥ak∥2 = 1

d diag(∥a1∥−2, . . . , ∥ad∥−2) ≽ 1
dmaxk ∥ak∥2 Id,

Gives convergence

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

dmaxk ∥ak∥2

)
∥Avk − b∥2.

maxk ∥ak∥ ≤ max∥x∥=1 ∥Ax∥ = ∥A∥⇝ better than general bound
Improved rate by choosing P(x =

√
dek) =

∥ak∥2

∥A∥2
F

(precompute ∥A∥F!) leads to

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

∥A∥2
F

)
∥Avk − b∥2 [Leventhal, Lewis 2010]
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Better results for specific distributions:
Standard normal vectors

Here ATA and M have same orthonormal eigenbasis (ui) and the eigenvalues of M are

µi = λi(M) = E

(
⟨ui, x⟩

∑d
j=1 λj⟨uj, x⟩

)
=

1
(2π)d/2

∫
Rd

z2
i

λ1z2
1 + · · ·+ λdz2

d
e−∥z∥2/2dz

≥ 1
2∥A∥2

F

Γ(d/2)
Γ((d+ 1)/2)

≈ 1
2
√

2d∥A∥2
F

Gives convergence

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

2
√

2d∥A∥2
F

)
∥Avk − b∥2
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Experiments for consistent systems
Comparison of SGDAS, RD (with Rademacher vectors), TFQMR and CGS.
Stopped at relative tolerance of 10−2 or after 10000 iterations.
Random sparse matrices A with normally distributed entries and random solution vectors
v̂ with normally distributed entries.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 9.68e-01 5.27e-01 8.67e-01
RD 9.99e-03 3.30e+01 3.76e-01
TFQMR 4.76e-02 3.35e+01 4.76e-01
CGS 9.99e-03 3.30e+01 3.27e-04

(a) Size of A: 300 × 1200, density of A: 0.1.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 8.72e-01 1.91e+00 6.89e-01
RD 9.95e-03 1.70e+01 2.77e-01
TFQMR 2.15e+00 2.37e+02 4.67e-01
CGS 4.23e+01 2.97e+03 7.52e-01

(b) Size of A: 1200 × 300, density of A: 0.1.
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Experiments for consistent systems
Comparison of SGDAS, RD (with Rademacher vectors), TFQMR and CGS.
Stopped at relative tolerance of 10−5 or after 500000 iterations.
Random sparse matrices A with normally distributed entries and random solution vectors
v̂ with normally distributed entries.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 1.16e-02 1.07e+01 8.56e+00
RD 1.00e-05 1.10e+01 1.78e+00
TFQMR 1.03e+00 1.23e+01 1.07e+01
CGS 4.33e+17 1.51e+22 1.34e+01

(c) Size of A: 200 × 100, density of A: 0.02.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 9.45e-03 1.05e+01 9.38e+00
RD 9.99e-06 1.07e+01 3.88e-01
TFQMR 5.41e-07 6.60e+01 3.33e-02
CGS 4.67e-06 6.60e+01 2.12e-02

(d) Size of A: 150 × 100, density of A: 0.1.

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 14 of 20



Convergence along singular vectors

Consider b = Av̂+ η and let {ui} be right singular vectors of A for singular values σi

Simple observation for the Landweber iteration with stepsize ω:

⟨vk+1 − v̂, ui⟩ = (1 − ωσ2
i )

k⟨v0 − v̂, ui⟩+
1−(1−ωσ2

i )
k

σi
⟨η, ui⟩

⇝ faster decay of σi is larger (Similar for Kaczmarz [ Jia, Jin, Lu 2017], [Steinerberger 2021])

For random descent with standard normal directions:

E(⟨vk+1 − v̂, ui⟩) = (1 − µiσ
2
i )

k⟨v0 − v̂, ui⟩+
1−(1−µiσ

2
i )

k

σi
⟨η, ui⟩

⇝ even faster decay if µi > 1/ω

Random descent has advantage if v0 − v̂ is rough and the µi’s are large
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“Inverse integration”

A =

1
... . . .
1 · · · 1

, d = 100

∥A∥−2σ2
i (for Landweber) vs. µiσ

2
i (for random descent)

Errors in higher singular modes decay way faster for random descent than for Landeweber
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“Inverse integration” with rough data

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

solution v

0.0 0.2 0.4 0.6 0.8 1.0

10

8

6

4

2

0

rhs with and without noise

Convergence of error and residual:

0 20000 40000 60000 80000 100000

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

relative residuals
normal
coordinate
landweber

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0
relative errors

normal
coordinate
landweber

Stop by Morozov: RD after 36.256 iterations with 5.4% error, Landweber after 22,045
iterations with 7.7% error
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Extension to non-linear least squares
Consider F : Rd → Rm and minRd

1
2∥F(v)− b∥2.

Landweber methods is

vk+1 = vk − τDF(vk)T(F(vk)− b)

Needs transpose of derivative
Adjoint sampling/stochastic Landweber + finite difference approximation

vk+1 = vk − τ⟨F(vk)− b,DF(vk)x⟩x ≈ vk − τ⟨F(vk)− b, F(vk + x)− F(vk)⟩x
Only need forward evaluations of F!
Related: Random search [Polyak, 1987]. Minimize Φ by

vk+1 = vk − γk
αk

[
Φ(vk + αku)− Φ(vk)

]
u, u ∼ Unif(Sd−1)

Converges for γk small enough and αk → 0.
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A non-linear Hammerstein equation

Consider F(v)(s) =
1∫

0
|s− t|v(t)3dt, discretized to F : Rd → Rd, d = 200, τ = 0.5/d.

Compare three variants:
Variant 1: vk+1 = vk − τ⟨F(vk)− b, F(vk + x)− F(vk)⟩x
Variant 2: vk+1 = vk − ⟨F(vk)− b, F(vk + τx)− F(vk)⟩x
Random search for Φ(v) = 1

2∥F(v)− b∥2, γk ≡ γ = 2, αk = 0.99k

0 1000 2000 3000 4000 5000

iterations

10−2

10−1

100

‖F
(v

)−
b
‖

‖b
‖

variant 1

variant 2

random search
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Conclusion

Transpose-free solution of least squares problems is possible by random descent and
adjoint sampling
Random descent even competitive with other transpose free methods like TFQMR and
CGS
Choice of distributions of directions influences convergence speed
Coordinate descent as special case
Random descent has some advantage for ill-posed problems with rough solutions
Possible extensions:

Proximal methods with adjoint sampling
Isotropic sampling works, but problem adapted distributions may by better
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