
Random descent for least squares functionals

Dirk Lorenz, joint work with Felix Schneppe and Lionel Tondji, May 22, 2023

Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:

1. There is only an implementation available, that produces Ax for any x
2. There is no implementation of the adjoint/transpose available
3. Automatic differentiation does not work for that implementation (otherwise could get ATy

as derivative of ⟨y, Ax⟩ w.r.t. x).
4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to

approximate a larger portion of matrix representation of A)

What can we still do?

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 2 of 20

Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:
1. There is only an implementation available, that produces Ax for any x

2. There is no implementation of the adjoint/transpose available
3. Automatic differentiation does not work for that implementation (otherwise could get ATy

as derivative of ⟨y, Ax⟩ w.r.t. x).
4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to

approximate a larger portion of matrix representation of A)
What can we still do?

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 2 of 20

Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:
1. There is only an implementation available, that produces Ax for any x
2. There is no implementation of the adjoint/transpose available

3. Automatic differentiation does not work for that implementation (otherwise could get ATy
as derivative of ⟨y, Ax⟩ w.r.t. x).

4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to
approximate a larger portion of matrix representation of A)

What can we still do?

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 2 of 20

Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:
1. There is only an implementation available, that produces Ax for any x
2. There is no implementation of the adjoint/transpose available
3. Automatic differentiation does not work for that implementation (otherwise could get ATy

as derivative of ⟨y, Ax⟩ w.r.t. x).

4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to
approximate a larger portion of matrix representation of A)

What can we still do?

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 2 of 20

Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:
1. There is only an implementation available, that produces Ax for any x
2. There is no implementation of the adjoint/transpose available
3. Automatic differentiation does not work for that implementation (otherwise could get ATy

as derivative of ⟨y, Ax⟩ w.r.t. x).
4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to

approximate a larger portion of matrix representation of A)

What can we still do?

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 2 of 20

Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:
1. There is only an implementation available, that produces Ax for any x
2. There is no implementation of the adjoint/transpose available
3. Automatic differentiation does not work for that implementation (otherwise could get ATy

as derivative of ⟨y, Ax⟩ w.r.t. x).
4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to

approximate a larger portion of matrix representation of A)

What can we still do?

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 2 of 20

Linear least squares
Consider simple, plain least squares

min
v∈Rd

1
2∥Av− b∥2, A ∈ L(Rd,Rm), b ∈ Rm

but under the following assumptions:
1. There is only an implementation available, that produces Ax for any x
2. There is no implementation of the adjoint/transpose available
3. Automatic differentiation does not work for that implementation (otherwise could get ATy

as derivative of ⟨y, Ax⟩ w.r.t. x).
4. Only a very small number of vectors of size either d or m can be stored (i.e. no way to

approximate a larger portion of matrix representation of A)
What can we still do?

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 2 of 20

Adjoint sampling

Lemma
If x ∈ Rd is a random vector with E(xxT) = Id, then

E(⟨Av− b, Ax⟩x) = AT(Av− b),

i.e. ⟨Av− b, Ax⟩x is an unbiased estimate for ∇(1
2∥Av− b∥2).

Hence, we can do stochastic gradient descent:

vk+1 = vk − τk⟨Avk − b, Ax⟩x for x ∼ D

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 3 of 20

Isotropic random vectors
Random vector x ∼ D is isotropic if E(xxT) = Id

Random unit vectors: x ∼ Unif(
√
dSd−1)

Standard normal vectors x ∼ N (0, Id)
Random coordinate vectors P(x =

√
dek) = 1

d
Rademacher vectors P(xk = ±1) = 1

2 independently

Necessarily:
E(∥x∥2) = E(xTx) = E(trace(xTx)) = E(trace(xxT)) = trace(E(xxT)) = trace(Id) = d

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 4 of 20

Stochastic gradient descent with adjoint sampling (SGDAS)
Random isotropic x (E(xxT) = Id) which also fulfills E(xxT∥x∥2) = cId

Initialize v0 = 0 ∈ Rd, k = 0, τ > 0
while not stopped do

obtain random vector x ∈ Rd

update vk+1 = vk − τ⟨Avk − b, Ax⟩x
end while

Theorem

Let Av̂ = b and (vk)k generated by SGDAS with 0 < τ < 2/(c∥A∥2). Then

E(∥vk+1 − v̂∥2) ≤ λk∥v0 − v̂∥2

for λ = ∥I− τATA(2I− τcATA)∥. Esp. τ = 2
c

1
λmax+λmin

gives λ = 1 − 4κ(A)
c(κ(A)+1)2

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 5 of 20

Convergence of residuals

Theorem

Let (vk)k be generated by SGDAS with τk = τ = 1
c∥A∥2 . Then it holds that

min
0≤k≤N−1

E(∥AT(Avk − b)∥2) ≤ c∥A∥2∥b∥2

N
.

Theorem

With β = 1 − τσmin(A)2(2 − τc∥A∥2) it holds that

E(∥Avk+1 − b∥2) ≤ βk+1∥Av0 − b∥2.

τ = 1/(c∥A∥2) gives β = 1 − σmin(A)2

c∥A∥2

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 6 of 20

Inconsistent systems

Theorem

Let Av̂ = b and (vk)k be generated by SGDAS with 0 < τ < 2
c∥A∥2 , and rhs b̃ = b+ r with

r = r′ + r′′ with r′ ∈ rg(A) and r′′ ∈ rg(A)⊥. Then

E(∥vk+1 − v̂∥2) ≤
(

1 + λ

2

)k+1
∥v0 − v̂∥2

+ τ2 2
(
(1 − λ)c+ 2∥I− τcATA∥2)

(1 − λ)2 ∥ATr′∥2

Drawbacks of SGDAS:
Very slow rate (note division by c; holds: c > d)
Stepsize needs knowledge about ∥A∥ (how to calculate without using AT?)

⇝ Try linesearch

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 7 of 20

Intermission: Calculating norms without adjoints
1. How to calculate ∥A∥ given our constraints?
2. Even more difficult: Assume that only routines for x 7→ Ax and y 7→ VTy available. How to

calculate ∥A− V∥?

For 1. use stochastic coordinate ascent to solve ∥A∥2 = max∥v∥=1 ∥Av∥2 with adjoint
sampling:

vk+1/2 = vk + τk⟨Avk, Ax⟩x, vk+1 = vk+1/2

∥vk+1/2∥

Linesearch more difficult, but possible…
For 2. use stochastic gradient ascent to solve
∥A− V∥ = max

∥u∥=∥v∥=1
⟨u, (A− V)v⟩ = max

∥u∥=∥v∥=1

[
⟨u, Av⟩ − ⟨VTu, v⟩

]
by

vk+1/2 = vk + τk

(
⟨uk, Ax⟩x− VTuk

)
, uk+1/2 = uk + τk

(
Avk − ⟨VTy, vk⟩y

)
vk+1 = vk+1/2

∥vk+1/2∥ , uk+1 = uk+1/2

∥uk+1/2∥ ,

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 8 of 20

Intermission: Calculating norms without adjoints
1. How to calculate ∥A∥ given our constraints?
2. Even more difficult: Assume that only routines for x 7→ Ax and y 7→ VTy available. How to

calculate ∥A− V∥?
For 1. use stochastic coordinate ascent to solve ∥A∥2 = max∥v∥=1 ∥Av∥2 with adjoint
sampling:

vk+1/2 = vk + τk⟨Avk, Ax⟩x, vk+1 = vk+1/2

∥vk+1/2∥

Linesearch more difficult, but possible…

For 2. use stochastic gradient ascent to solve
∥A− V∥ = max

∥u∥=∥v∥=1
⟨u, (A− V)v⟩ = max

∥u∥=∥v∥=1

[
⟨u, Av⟩ − ⟨VTu, v⟩

]
by

vk+1/2 = vk + τk

(
⟨uk, Ax⟩x− VTuk

)
, uk+1/2 = uk + τk

(
Avk − ⟨VTy, vk⟩y

)
vk+1 = vk+1/2

∥vk+1/2∥ , uk+1 = uk+1/2

∥uk+1/2∥ ,

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 8 of 20

Intermission: Calculating norms without adjoints
1. How to calculate ∥A∥ given our constraints?
2. Even more difficult: Assume that only routines for x 7→ Ax and y 7→ VTy available. How to

calculate ∥A− V∥?
For 1. use stochastic coordinate ascent to solve ∥A∥2 = max∥v∥=1 ∥Av∥2 with adjoint
sampling:

vk+1/2 = vk + τk⟨Avk, Ax⟩x, vk+1 = vk+1/2

∥vk+1/2∥

Linesearch more difficult, but possible…
For 2. use stochastic gradient ascent to solve
∥A− V∥ = max

∥u∥=∥v∥=1
⟨u, (A− V)v⟩ = max

∥u∥=∥v∥=1

[
⟨u, Av⟩ − ⟨VTu, v⟩

]
by

vk+1/2 = vk + τk

(
⟨uk, Ax⟩x− VTuk

)
, uk+1/2 = uk + τk

(
Avk − ⟨VTy, vk⟩y

)
vk+1 = vk+1/2

∥vk+1/2∥ , uk+1 = uk+1/2

∥uk+1/2∥ ,

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 8 of 20

Random descent

Lemma

The minimum of τ 7→ 1
2∥A(vk + τx)− b∥2 is attained at

τk =

{
− ⟨Avk−b,Ax⟩

∥Ax∥2 Ax ̸= 0,
0 Ax = 0.

Does need neither ∥A∥ nor AT !
Gives random descent method (RD)

vk+1 = vk − ⟨Avk − b, Ax⟩
∥Ax∥2 x.

Similar ideas: Random pursuit [Stich, Muller, Gartner, 2013], [Nesterov, Spokoiny, 2017]

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 9 of 20

Theorem

Let vk be generated by RD. Then it holds

E(∥Avk−1 − b∥2) = ∥Avk − b∥2 − ⟨AT(Avk − b), E
(

xxT
∥Ax∥2

)
(AT(Avk − b)⟩.

Convergence hinges on the spectral properties of

M := E
(

xxT
∥Ax∥2

)
∈ Rd×d

(if exists!). Simple and bad estimate:

xxT

∥Ax∥2 ≥ 1
∥A∥2

xxT

∥x∥2 ⇝ M ≽
1

d∥A∥2 Id.

Gives only

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

d∥A∥2

)
∥Avk − b∥2

s
May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 10 of 20

Better results for specific distributions:
Random coordinate vectors

Gives randomized coordinate descent [Luenberger 1984, Leventhal, Lewis 2010]
P(x =

√
dek) = 1

d , ak = Aek

M =
d

∑
k=1

1
d

ekeTk
∥ak∥2 = 1

d diag(∥a1∥−2, . . . , ∥ad∥−2) ≽ 1
dmaxk ∥ak∥2 Id,

Gives convergence

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

dmaxk ∥ak∥2

)
∥Avk − b∥2.

maxk ∥ak∥ ≤ max∥x∥=1 ∥Ax∥ = ∥A∥⇝ better than general bound
Improved rate by choosing P(x =

√
dek) =

∥ak∥2

∥A∥2
F

(precompute ∥A∥F!) leads to

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

∥A∥2
F

)
∥Avk − b∥2 [Leventhal, Lewis 2010]

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 11 of 20

Better results for specific distributions:
Standard normal vectors

Here ATA and M have same orthonormal eigenbasis (ui) and the eigenvalues of M are

µi = λi(M) = E

(
⟨ui, x⟩

∑d
j=1 λj⟨uj, x⟩

)
=

1
(2π)d/2

∫
Rd

z2
i

λ1z2
1 + · · ·+ λdz2

d
e−∥z∥2/2dz

≥ 1
2∥A∥2

F

Γ(d/2)
Γ((d+ 1)/2)

≈ 1
2
√

2d∥A∥2
F

Gives convergence

E(∥Avk+1 − b∥2) ≤
(

1 − σmin(A)2

2
√

2d∥A∥2
F

)
∥Avk − b∥2

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 12 of 20

Experiments for consistent systems
Comparison of SGDAS, RD (with Rademacher vectors), TFQMR and CGS.
Stopped at relative tolerance of 10−2 or after 10000 iterations.
Random sparse matrices A with normally distributed entries and random solution vectors
v̂ with normally distributed entries.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 9.68e-01 5.27e-01 8.67e-01
RD 9.99e-03 3.30e+01 3.76e-01
TFQMR 4.76e-02 3.35e+01 4.76e-01
CGS 9.99e-03 3.30e+01 3.27e-04

(a) Size of A: 300 × 1200, density of A: 0.1.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 8.72e-01 1.91e+00 6.89e-01
RD 9.95e-03 1.70e+01 2.77e-01
TFQMR 2.15e+00 2.37e+02 4.67e-01
CGS 4.23e+01 2.97e+03 7.52e-01

(b) Size of A: 1200 × 300, density of A: 0.1.

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 13 of 20

Experiments for consistent systems
Comparison of SGDAS, RD (with Rademacher vectors), TFQMR and CGS.
Stopped at relative tolerance of 10−5 or after 500000 iterations.
Random sparse matrices A with normally distributed entries and random solution vectors
v̂ with normally distributed entries.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 1.16e-02 1.07e+01 8.56e+00
RD 1.00e-05 1.10e+01 1.78e+00
TFQMR 1.03e+00 1.23e+01 1.07e+01
CGS 4.33e+17 1.51e+22 1.34e+01

(c) Size of A: 200 × 100, density of A: 0.02.

∥Av−b∥
∥b∥ ∥v∥ time (s)

SGDAS 9.45e-03 1.05e+01 9.38e+00
RD 9.99e-06 1.07e+01 3.88e-01
TFQMR 5.41e-07 6.60e+01 3.33e-02
CGS 4.67e-06 6.60e+01 2.12e-02

(d) Size of A: 150 × 100, density of A: 0.1.

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 14 of 20

Convergence along singular vectors

Consider b = Av̂+ η and let {ui} be right singular vectors of A for singular values σi

Simple observation for the Landweber iteration with stepsize ω:

⟨vk+1 − v̂, ui⟩ = (1 − ωσ2
i)

k⟨v0 − v̂, ui⟩+
1−(1−ωσ2

i)
k

σi
⟨η, ui⟩

⇝ faster decay of σi is larger (Similar for Kaczmarz [Jia, Jin, Lu 2017], [Steinerberger 2021])

For random descent with standard normal directions:

E(⟨vk+1 − v̂, ui⟩) = (1 − µiσ
2
i)

k⟨v0 − v̂, ui⟩+
1−(1−µiσ

2
i)

k

σi
⟨η, ui⟩

⇝ even faster decay if µi > 1/ω

Random descent has advantage if v0 − v̂ is rough and the µi’s are large

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 15 of 20

“Inverse integration”

A =

1
... . . .
1 · · · 1

, d = 100

∥A∥−2σ2
i (for Landweber) vs. µiσ

2
i (for random descent)

Errors in higher singular modes decay way faster for random descent than for Landeweber

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 16 of 20

“Inverse integration” with rough data

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

solution v

0.0 0.2 0.4 0.6 0.8 1.0

10

8

6

4

2

0

rhs with and without noise

Convergence of error and residual:

0 20000 40000 60000 80000 100000

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

relative residuals
normal
coordinate
landweber

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0
relative errors

normal
coordinate
landweber

Stop by Morozov: RD after 36.256 iterations with 5.4% error, Landweber after 22,045
iterations with 7.7% error

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 17 of 20

Extension to non-linear least squares
Consider F : Rd → Rm and minRd

1
2∥F(v)− b∥2.

Landweber methods is

vk+1 = vk − τDF(vk)T(F(vk)− b)

Needs transpose of derivative
Adjoint sampling/stochastic Landweber + finite difference approximation

vk+1 = vk − τ⟨F(vk)− b,DF(vk)x⟩x ≈ vk − τ⟨F(vk)− b, F(vk + x)− F(vk)⟩x
Only need forward evaluations of F!
Related: Random search [Polyak, 1987]. Minimize Φ by

vk+1 = vk − γk
αk

[
Φ(vk + αku)− Φ(vk)

]
u, u ∼ Unif(Sd−1)

Converges for γk small enough and αk → 0.

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 18 of 20

A non-linear Hammerstein equation

Consider F(v)(s) =
1∫

0
|s− t|v(t)3dt, discretized to F : Rd → Rd, d = 200, τ = 0.5/d.

Compare three variants:
Variant 1: vk+1 = vk − τ⟨F(vk)− b, F(vk + x)− F(vk)⟩x
Variant 2: vk+1 = vk − ⟨F(vk)− b, F(vk + τx)− F(vk)⟩x
Random search for Φ(v) = 1

2∥F(v)− b∥2, γk ≡ γ = 2, αk = 0.99k

0 1000 2000 3000 4000 5000

iterations

10−2

10−1

100

‖F
(v

)−
b
‖

‖b
‖

variant 1

variant 2

random search

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 19 of 20

Conclusion

Transpose-free solution of least squares problems is possible by random descent and
adjoint sampling
Random descent even competitive with other transpose free methods like TFQMR and
CGS
Choice of distributions of directions influences convergence speed
Coordinate descent as special case
Random descent has some advantage for ill-posed problems with rough solutions
Possible extensions:

Proximal methods with adjoint sampling
Isotropic sampling works, but problem adapted distributions may by better

May 22, 2023 Dirk Lorenz Random descent for least squares functionals Page 20 of 20

