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Historical Context.
Predictive model for the state vn (at time tn):

State: vn+1 =f (vn),

Observations: yn+1 =Hvn+1 + ηn+1.

Random initial state v0 and noise ηn.

Data Assimilation: Given observations Y †
n = {y†

ℓ }nℓ=1 find vn|Y †
n

Example: Suppose f (vn) = Fvn, v0 ∼ N(m0,C0) and ηn ∼ N(0, Γ).

Then vn|Y †
n ∼ N(mn,Cn)

Kalman filter [Kalman, 1960]

Forecast Step: m̂n+1 = Fmn, Ĉn+1 = FCn+1F
T

Analysis Step:

mn+1 =m̂n+1 + Ĉn+1H
T (HĈn+1H

T + Γ)−1(y†
n+1 − Hm̂n+1)

Cn+1 =Ĉn+1 + Ĉn+1H
T (HĈn+1H

T + Γ)−1HĈn+1

Nonlinear case: Take F = Df (vn): Extended Kalman Filter.
Issues for DA: Stability of F and the size of Cn.
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T (HĈn+1H

T + Γ)−1HĈn+1
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Evensen’s Ensemble Kalman Filter (EnKF).
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. C5, PAGES 10,143-10,162, MAY 15, 1994 

Sequential data assimilation with a nonlinear quasi-geostrophic 
model using Monte Carlo methods to forecast error statistics 
Geir Evensen 

Nansen Environmental and Remote Sensing Center, Bergen, Norway 

Abstract. A new sequential data assimilation method is discussed. It is based on 
forecasting the error statistics using Monte Carlo methods, a better alternative than solving 
the traditional and computationally extremely demanding approximate error covariance 
equation used in the extended Kalman filter. The unbounded error growth found in the 
extended Kalman filter, which is caused by an overly simplified closure in the error 
covariance equation, is completely eliminated. Open boundaries can be handled as long 
as the ocean model is well posed. Well-known numerical instabilities associated with the 
error covariance equation are avoided because storage and evolution of the error covariance 
matrix itself are not needed. The results are also better than what is provided by the 
extended Kalman filter since there is no closure problem and the quality of the forecast error 
statistics therefore improves. The method should be feasible also for more sophisticated 
primitive equation models. The computational load for reasonable accuracy is only a 
fraction of what is required for the extended Kalman filter and is given by the storage of, 
say, 100 model states for an ensemble size of 100 and thus CPU requirements of the order 
of the cost of 100 model integrations. The proposed method can therefore be used with 
realistic nonlinear ocean models on large domains on existing computers, and it is also well 
suited for parallel computers and clusters of workstations where each processor integrates 
a few members of the ensemble. 

Introduction 

The implementation of the extended Kalman filter for data 
assimilation in a multilayer quasi-geostrophic (QG) model 
has previously been discussed by Evensen [1992, 1993]. 
The main result from Evensen's work [1992] is the find- 
ing of an apparent closure problem in the error covariance 
evolution equation. The extended Kalman filter applies a clo- 
sure scheme where third- and higher-order moments in the 
error covariance evolution equation are discarded. This sim- 
ple closure technique results in a unbounded error variance 
growth caused by the linearization performed when higher- 
order moments are neglected. However, a promising result 
from this work was that the error growth could be avoided by 
excluding a specific term in the transition matrix that caused 
the error growth, and this approach led to good results in a 
simple data assimilation experiment. 

Evensen [ 1993] extended the work to include the possibil- 
ities of using open boundaries with in- and outflow with the 
extended Kalman filter. It was pointed out that even if open 
boundaries can be used without much difficulty in the pure 
ocean model, they significantly complicate the treatment of 
the error evolution equation, where approximate methods 
must be used. These approximations, although consistent, 

Copyright 1994 by the American Geophysical Union. 

Paper number 94JC00572. 
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lead to some serious difficulties in conserving the definiteness 
of the error covariance matrix during long time integrations. 
This work showed that even if open boundaries could be han- 
dled, they resulted in rather unstable numerical algorithms. 

The important conclusions from these two works are that a 
sequential data assimilation algorithm gives good results in a 
data assimilation scheme for the nonlinear QG model and that 
the results improve significantly according to improvements 
in the error estimate for the model forecast. 

The updating scheme in the Kalman filter requires that 
the error covariance matrices for the model forecast and the 

measurement vector be known every time measurements are 
available. Results from Evensen [1992, 1993] and the addi- 
tional fact that the Kalman filter is extremely expensive to 
compute, even for modest problem sizes, motivate the search 
for new methods for error covariance evolution or estimation. 
Such methods should include both the effect of internal error 
growth caused by the unstable dynamics in nonlinear ocean 
circulation models and the external error growth associated 
with the imperfection of the numerical ocean model. 

The connection between stochastic dynamic prediction 
and the error covariance evolution used in the extended 

Kalman filter is discussed on the basis of the general theory 
of error evolution and prediction. The approach of stochas- 
tic dynamic prediction was first proposed by Epstein [ 1969], 
and several papers have later extended this theory, mainly in 
connection with simple spectral models in meteorology; see 
for example, Gleeson [1970], Fleming [1971a, b], Epstein 
and Pitcher [1972], Leith [1971, 1974], and Pitcher [1977]. 
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Ensemble Kalman filter (EnKF)

Ensemble of J particles {v (j)
n }Jj=1 starting with v

(j)
0 ∼ N(m0,C0).

Forecast Step: v̂
(j)
n+1 = Fv (j)

n

Compute empirical mean and covariance

v̂n+1 =
1

J

J−1∑
j=1

v̂
(j)
n , Ĉn+1 =

1

J

J−1∑
j=1

(v̂
(j)
n − vn)(v̂

(j)
n − vn)

T

Analysis Step: v
(j)
n+1 = v̂

(j)
n+1+ Ĉn+1H

T (HĈn+1H
T +Γ)−1(y†

n+1+ η
(j)
n+1−Hm̂n+1)

where η
(j)
n+1 ∼ N(0, Γ).

v
(j)
n+1 ∼ N(mn+1,Cn+1) = P(vn+1|Y †

n+1)
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(j)
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EnKF in Petroleum Engineering
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Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter

Geir Nævdal, RF-Rogaland Research; Liv Merethe Johnsen, SPE, Norsk Hydro; Sigurd Ivar Aanonsen∗, SPE, Norsk Hydro;
Erlend H. Vefring, SPE, RF-Rogaland Research
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presented, have not been reviewed by the Society of Petroleum Engineers and are subject
to correction by the author(s). The material, as presented, does not necessarily reflect any
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Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this pa-
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neers is prohibited. Permission to reproduce in print is restricted to an abstract of not more
than 300 words; illustrations may not be copied. The abstract must contain conspicuous
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.
Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract
The use of ensemble Kalman filter techniques for continuous
updating of reservoir model is demonstrated. The ensemble
Kalman filter technique is introduced, and thereafter applied on
two 2-D reservoir models. One is a synthetic model with two
producers and one injector. The other model is a simplified 2-D
field model, which is generated by using a horizontal layer from
a North Sea field model.

By assimilating measured production data, the reservoir
model is continuously updated. The updated models give im-
proved forecasts. Both dynamic variables, as pressure and sat-
urations, and static variables as the permeability are updated in
the reservoir model.

Introduction
In the management of reservoirs it is important to utilize all
available data in order to make accurate forecasts. For short
time forecasts, in particular, it is important that the initial val-
ues are consistent with recent measurements. The ensemble
Kalman filter1 is a Monte Carlo approach, which is promising
with respect to achieving this goal through continuous model
updating and reservoir monitoring.

In this paper, the ensemble Kalman filter is utilized to up-
date both static parameters, such as the permeability, and dy-
namic variables, such as the pressure and saturation of the reser-
voir model. The filter computations are based on an ensemble
of realizations of the reservoir model, and when new measure-
ments are available new updates are obtained by combining the
model predictions with the new measurements. Statistics about
the model uncertainty is built from the ensemble. While new
measurements become available, the filter is used to update all

the realizations of the reservoir model. This means that an en-
semble of updated realizations of the reservoir model is always
available.

The ensemble Kalman filter has previously been success-
fully applied for large-scale nonlinear models in oceanography2

and hydrology3. In those applications only dynamic variables
were tuned. Tuning of model parameters and dynamic variables
was done simultaneously in a well flow model used for under-
balanced drilling4. In two previous papers5,6, the filter has been
used to update static parameters in near-well reservoir models,
by tuning the permeability field. In this paper, the filter has
been further developed to tune the permeability for simplified
real field reservoir simulation models.

We present results from a synthetic model as well as a sim-
plified real field model. The measurements are well bottom-
hole pressures, water cuts and gas/oil ratios. A synthetic model
gives the possibility of comparing the solution obtained by the
filter to the true solution, and the performance of the filter can
be evaluated. It is shown how the reservoir model is updated
as new measurements becomes available, and that good fore-
casts are obtained. The convergence of the reservoir properties
to the true solution as more measurements becomes available is
investigated.

Since the members of the ensemble are updated indepen-
dently of each other, the method is very suitable for parallel
processing. It is also conceptually straightforward to extend the
methodology to update other reservoir properties than the per-
meability.

Based on the updated ensemble of models, production fore-
casts and reservoir management studies may be performed on
a single ”average” model, which is always consistent with the
latest measurements. Alternatively, the entire ensemble may be
applied to estimate the uncertainties in the forecasts.

Updating reservoir models with ensemble Kalman fil-
ter
The Kalman filter was originally developed to update the states
of linear systems to take into account available measurements7.
In our case, the system is a reservoir model, using black oil, and
three phases (water, oil and gas). For this model, the solution
variables of the system are the pressure, the water saturation, in
addition to a third solution variable that depends on the oil and
gas saturation. If the gas saturation is zero, the third solution
variable becomes the solution gas/oil ratio, if the oil saturation

∗Now with Centre for Integrated Petroleum Research, University of Bergen
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updating of reservoir model is demonstrated. The ensemble
Kalman filter technique is introduced, and thereafter applied on
two 2-D reservoir models. One is a synthetic model with two
producers and one injector. The other model is a simplified 2-D
field model, which is generated by using a horizontal layer from
a North Sea field model.

By assimilating measured production data, the reservoir
model is continuously updated. The updated models give im-
proved forecasts. Both dynamic variables, as pressure and sat-
urations, and static variables as the permeability are updated in
the reservoir model.

Introduction
In the management of reservoirs it is important to utilize all
available data in order to make accurate forecasts. For short
time forecasts, in particular, it is important that the initial val-
ues are consistent with recent measurements. The ensemble
Kalman filter1 is a Monte Carlo approach, which is promising
with respect to achieving this goal through continuous model
updating and reservoir monitoring.

In this paper, the ensemble Kalman filter is utilized to up-
date both static parameters, such as the permeability, and dy-
namic variables, such as the pressure and saturation of the reser-
voir model. The filter computations are based on an ensemble
of realizations of the reservoir model, and when new measure-
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model predictions with the new measurements. Statistics about
the model uncertainty is built from the ensemble. While new
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semble of updated realizations of the reservoir model is always
available.

The ensemble Kalman filter has previously been success-
fully applied for large-scale nonlinear models in oceanography2

and hydrology3. In those applications only dynamic variables
were tuned. Tuning of model parameters and dynamic variables
was done simultaneously in a well flow model used for under-
balanced drilling4. In two previous papers5,6, the filter has been
used to update static parameters in near-well reservoir models,
by tuning the permeability field. In this paper, the filter has
been further developed to tune the permeability for simplified
real field reservoir simulation models.

We present results from a synthetic model as well as a sim-
plified real field model. The measurements are well bottom-
hole pressures, water cuts and gas/oil ratios. A synthetic model
gives the possibility of comparing the solution obtained by the
filter to the true solution, and the performance of the filter can
be evaluated. It is shown how the reservoir model is updated
as new measurements becomes available, and that good fore-
casts are obtained. The convergence of the reservoir properties
to the true solution as more measurements becomes available is
investigated.

Since the members of the ensemble are updated indepen-
dently of each other, the method is very suitable for parallel
processing. It is also conceptually straightforward to extend the
methodology to update other reservoir properties than the per-
meability.

Based on the updated ensemble of models, production fore-
casts and reservoir management studies may be performed on
a single ”average” model, which is always consistent with the
latest measurements. Alternatively, the entire ensemble may be
applied to estimate the uncertainties in the forecasts.

Updating reservoir models with ensemble Kalman fil-
ter
The Kalman filter was originally developed to update the states
of linear systems to take into account available measurements7.
In our case, the system is a reservoir model, using black oil, and
three phases (water, oil and gas). For this model, the solution
variables of the system are the pressure, the water saturation, in
addition to a third solution variable that depends on the oil and
gas saturation. If the gas saturation is zero, the third solution
variable becomes the solution gas/oil ratio, if the oil saturation
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updating of reservoir model is demonstrated. The ensemble
Kalman filter technique is introduced, and thereafter applied on
two 2-D reservoir models. One is a synthetic model with two
producers and one injector. The other model is a simplified 2-D
field model, which is generated by using a horizontal layer from
a North Sea field model.

By assimilating measured production data, the reservoir
model is continuously updated. The updated models give im-
proved forecasts. Both dynamic variables, as pressure and sat-
urations, and static variables as the permeability are updated in
the reservoir model.

Introduction
In the management of reservoirs it is important to utilize all
available data in order to make accurate forecasts. For short
time forecasts, in particular, it is important that the initial val-
ues are consistent with recent measurements. The ensemble
Kalman filter1 is a Monte Carlo approach, which is promising
with respect to achieving this goal through continuous model
updating and reservoir monitoring.

In this paper, the ensemble Kalman filter is utilized to up-
date both static parameters, such as the permeability, and dy-
namic variables, such as the pressure and saturation of the reser-
voir model. The filter computations are based on an ensemble
of realizations of the reservoir model, and when new measure-
ments are available new updates are obtained by combining the
model predictions with the new measurements. Statistics about
the model uncertainty is built from the ensemble. While new
measurements become available, the filter is used to update all
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semble of updated realizations of the reservoir model is always
available.

The ensemble Kalman filter has previously been success-
fully applied for large-scale nonlinear models in oceanography2

and hydrology3. In those applications only dynamic variables
were tuned. Tuning of model parameters and dynamic variables
was done simultaneously in a well flow model used for under-
balanced drilling4. In two previous papers5,6, the filter has been
used to update static parameters in near-well reservoir models,
by tuning the permeability field. In this paper, the filter has
been further developed to tune the permeability for simplified
real field reservoir simulation models.

We present results from a synthetic model as well as a sim-
plified real field model. The measurements are well bottom-
hole pressures, water cuts and gas/oil ratios. A synthetic model
gives the possibility of comparing the solution obtained by the
filter to the true solution, and the performance of the filter can
be evaluated. It is shown how the reservoir model is updated
as new measurements becomes available, and that good fore-
casts are obtained. The convergence of the reservoir properties
to the true solution as more measurements becomes available is
investigated.

Since the members of the ensemble are updated indepen-
dently of each other, the method is very suitable for parallel
processing. It is also conceptually straightforward to extend the
methodology to update other reservoir properties than the per-
meability.

Based on the updated ensemble of models, production fore-
casts and reservoir management studies may be performed on
a single ”average” model, which is always consistent with the
latest measurements. Alternatively, the entire ensemble may be
applied to estimate the uncertainties in the forecasts.

Updating reservoir models with ensemble Kalman fil-
ter
The Kalman filter was originally developed to update the states
of linear systems to take into account available measurements7.
In our case, the system is a reservoir model, using black oil, and
three phases (water, oil and gas). For this model, the solution
variables of the system are the pressure, the water saturation, in
addition to a third solution variable that depends on the oil and
gas saturation. If the gas saturation is zero, the third solution
variable becomes the solution gas/oil ratio, if the oil saturation
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two 2-D reservoir models. One is a synthetic model with two
producers and one injector. The other model is a simplified 2-D
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a North Sea field model.

By assimilating measured production data, the reservoir
model is continuously updated. The updated models give im-
proved forecasts. Both dynamic variables, as pressure and sat-
urations, and static variables as the permeability are updated in
the reservoir model.

Introduction
In the management of reservoirs it is important to utilize all
available data in order to make accurate forecasts. For short
time forecasts, in particular, it is important that the initial val-
ues are consistent with recent measurements. The ensemble
Kalman filter1 is a Monte Carlo approach, which is promising
with respect to achieving this goal through continuous model
updating and reservoir monitoring.
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namic variables, such as the pressure and saturation of the reser-
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the model uncertainty is built from the ensemble. While new
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hole pressures, water cuts and gas/oil ratios. A synthetic model
gives the possibility of comparing the solution obtained by the
filter to the true solution, and the performance of the filter can
be evaluated. It is shown how the reservoir model is updated
as new measurements becomes available, and that good fore-
casts are obtained. The convergence of the reservoir properties
to the true solution as more measurements becomes available is
investigated.
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dently of each other, the method is very suitable for parallel
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methodology to update other reservoir properties than the per-
meability.
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casts and reservoir management studies may be performed on
a single ”average” model, which is always consistent with the
latest measurements. Alternatively, the entire ensemble may be
applied to estimate the uncertainties in the forecasts.
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The Kalman filter was originally developed to update the states
of linear systems to take into account available measurements7.
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Abstract
The ensemble Kalman filter (EnKF) is a subject of

intensive investigation for use as a reservoir management
tool. For strongly nonlinear problems, however, EnKF can
fail to achieve an acceptable data match at certain times in
the assimilation process. Here, we provide iterative EnKF
procedures to remedy this deficiency and explore the valid-
ity of these iterative methods compared to standard EnKF
by considering two examples, one of which is pertains to
a simple problem where the posterior probability density
function has two modes. In both examples, we are able to
obtain better data matches using iterative methods than
with standard EnKF.

In Appendix A, we enumerate the assumptions that
must hold in order to show that EnKF provides a cor-
rect sampling of the probability distribution for the ran-
dom variables. This derivation calls into question the com-
mon derivation in which one adds the data to the original
combined state vector of model parameters and dynamical
variables. In fact, it appears that there is no assurance
that this trick for turning a nonlinear problem into a lin-
ear problem results in a correct sampling of the pdf one
wishes to sample. However, we show that augmenting the
state vector with the data results in a correct procedure
for sampling the pdf if at every data assimilation step, the
predicted data vector is a linear function of the combined
(unaugmented) state vector and the average predicted data
vector is equal to the predicted data evaluated at the aver-
age of the predicted combined state vector. Without these
assumptions, we know of no way to show EnKF samples
correctly. For completeness, in Appendix C, we show that
each ensemble member of model parameters obtained at
each step of EnKF is a linear combination of the initial

ensemble, which emphasizes the importance of obtaining a
sufficiently large initial ensemble.

Introduction
The ensemble Kalman filter (EnKF) was introduced by

Evensen (1994) in the context of ocean dynamics literature
as a Monte Carlo approximation of the extended Kalman
filter and has been extensively discussed in the weather
prediction literature. EnKF was recently introduced into
the petroleum engineering literature (Naevdal et al., 2002,
2003) and adapted to the problem of estimating reservoir
variables or parameters (permeability and porosity fields).

Since its introduction into the petroleum engineering
literature, EnKF has been investigated by a variety of re-
searchers including Gu and Oliver (2004); Skjervheim et al.
(2005); Gao et al. (2005); Liu and Oliver (2005); Wen
and Chen (2005); Zafari and Reynolds (2005a); Skjervheim
et al. (2006); Thulin et al. (2007) in a reservoir characteri-
zation setting. The method has also recently been applied
successfully to a true field case (Evensen et al. (2007)). As
shown in Gao et al. (2006), EnKF and the more compu-
tationally intense randomized maximum likelihood (RML)
method gave a similar model estimate and a similar char-
acterization of uncertainty in reservoir performance predic-
tions for the well known PUNQ-S3 problem. For the most
part, EnKF has performed well for reservoir characteriza-
tion examples. However, it is relatively easy to generate
toy problems with multimodal conditional pdf’s for which
EnKF samples very poorly and hence provides a poor as-
sessment of uncertainty Zafari (2005); Zafari and Reynolds
(2005b); Reynolds et al. (2006). Reynolds et al. (2006)
also showed a small, but representative reservoir problem
where EnKF has difficulty correctly assimilating water-
cut data, and because of this, they designed an iterative
process that combines features of randomized maximum
likelihood (Oliver et al., 1996; Zhang and Reynolds, 2002;
Zhang et al., 2005). Reynolds et al. (2006) also showed
the EnKF update (analysis) equation is the same equa-
tion as one obtains by using RML with one Gauss-Newton
iteration with a full step using the EnKF forecast (pre-
diction) as the initial guess. Because of this result, it not
surprising that it may be necessary to use an iterative pro-
cedure to obtain an acceptable match of data for highly
nonlinear problems. Here, we present a detailed deriva-
tion of our current version of the Reynolds et al. (2006)
algorithm and refer to this algorithm as IEnKF(1). In
IEnKF(1), we simply match data sequentially in time as

SPE 109808

An Iterative Ensemble Kalman Filter for Data Assimilation

Gaoming Li, SPE, U. of Tulsa and A. C. Reynolds, SPE, U. of Tulsa

Copyright 2007, Society of Petroleum Engineers

This paper was prepared for presentation at the 2007 SPE Annual Technical Con-
ference and Exhibition held in Anaheim, California, U.S.A., 11–14 November 2007.

This paper was selected for presentation by an SPE Program Committee follow-
ing review of information contained in an abstract submitted by the author(s).
Contents of the paper, as presented, have not been reviewed by the Society of
Petroleum Egineers and are subject to correction by the author(s). The material,
as presented, does not necessarily reflect any position of the Society of Petroleum
Engineers, its officers, or members. Papers presented at SPE meetings are subject
to publication review by Editorial Committees of the Society of Petroleum Engi-
neers. Electronic reproduction, distribution, or storage of any part of this paper
for commercial purposes without the written consent of the Society of Petroleum
Engineers is prohibited. Permission to reproduce in print is restricted to an ab-
stract of not more than 300 words; illustrations may not be copied. The abstract
must contain conspicuous acknowledgment of where and by whom the paper was
presented. Write Librarian, SPE, P.O. Box 833836, Richardson, Texas 75083-3836
U.S.A., fax 01-972-952-9435.

Abstract
The ensemble Kalman filter (EnKF) is a subject of

intensive investigation for use as a reservoir management
tool. For strongly nonlinear problems, however, EnKF can
fail to achieve an acceptable data match at certain times in
the assimilation process. Here, we provide iterative EnKF
procedures to remedy this deficiency and explore the valid-
ity of these iterative methods compared to standard EnKF
by considering two examples, one of which is pertains to
a simple problem where the posterior probability density
function has two modes. In both examples, we are able to
obtain better data matches using iterative methods than
with standard EnKF.

In Appendix A, we enumerate the assumptions that
must hold in order to show that EnKF provides a cor-
rect sampling of the probability distribution for the ran-
dom variables. This derivation calls into question the com-
mon derivation in which one adds the data to the original
combined state vector of model parameters and dynamical
variables. In fact, it appears that there is no assurance
that this trick for turning a nonlinear problem into a lin-
ear problem results in a correct sampling of the pdf one
wishes to sample. However, we show that augmenting the
state vector with the data results in a correct procedure
for sampling the pdf if at every data assimilation step, the
predicted data vector is a linear function of the combined
(unaugmented) state vector and the average predicted data
vector is equal to the predicted data evaluated at the aver-
age of the predicted combined state vector. Without these
assumptions, we know of no way to show EnKF samples
correctly. For completeness, in Appendix C, we show that
each ensemble member of model parameters obtained at
each step of EnKF is a linear combination of the initial

ensemble, which emphasizes the importance of obtaining a
sufficiently large initial ensemble.

Introduction
The ensemble Kalman filter (EnKF) was introduced by

Evensen (1994) in the context of ocean dynamics literature
as a Monte Carlo approximation of the extended Kalman
filter and has been extensively discussed in the weather
prediction literature. EnKF was recently introduced into
the petroleum engineering literature (Naevdal et al., 2002,
2003) and adapted to the problem of estimating reservoir
variables or parameters (permeability and porosity fields).

Since its introduction into the petroleum engineering
literature, EnKF has been investigated by a variety of re-
searchers including Gu and Oliver (2004); Skjervheim et al.
(2005); Gao et al. (2005); Liu and Oliver (2005); Wen
and Chen (2005); Zafari and Reynolds (2005a); Skjervheim
et al. (2006); Thulin et al. (2007) in a reservoir characteri-
zation setting. The method has also recently been applied
successfully to a true field case (Evensen et al. (2007)). As
shown in Gao et al. (2006), EnKF and the more compu-
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likelihood (Oliver et al., 1996; Zhang and Reynolds, 2002;
Zhang et al., 2005). Reynolds et al. (2006) also showed
the EnKF update (analysis) equation is the same equa-
tion as one obtains by using RML with one Gauss-Newton
iteration with a full step using the EnKF forecast (pre-
diction) as the initial guess. Because of this result, it not
surprising that it may be necessary to use an iterative pro-
cedure to obtain an acceptable match of data for highly
nonlinear problems. Here, we present a detailed deriva-
tion of our current version of the Reynolds et al. (2006)
algorithm and refer to this algorithm as IEnKF(1). In
IEnKF(1), we simply match data sequentially in time as
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Abstract
This paper compares two ensemble-based data-assimilation methods when solving the
history-matching problem in reservoir-simulation models. The methods are the Ensemble
Kalman Filter (EnKF) and the Ensemble Smoother (ES). Several publications have
discussed the use of EnKF in petroleum applications while ES is now used for the first
time for history matching. ES differs from EnKF by computing a global update in the
space-time domain, rather than using recursive updates in time as in EnKF. Thus, the
sequential updating of the realizations with associated restarts is avoided.

EnKF and ES provide identical solutions for state estimation with linear dynamical
models. However, for nonlinear dynamical models, and in particular models with chaotic
dynamics, EnKF is superior to ES, due to the fact that the recursive updates keep the
model on track and close to the true solution. Thus, ES is not much used and EnKF has
been the method of choice in most data assimilation studies where ensemble methods
are used.

On the other hand, reservoir simulation models are rather diffusive systems when
compared to the chaotic dynamical models that were previously used to test ES. If we can
assume that the model solution is stable with respect to small perturbations in the initial
conditions and the history-matching parameters, then ES should give similar results to
EnKF, and ES will be a more efficient and much simpler method to implement and apply.

The technical advantages of using ES compared to EnKF are severe, especially when the
methods are applied with complex real reservoir models. ES provides a significant
reduction in simulation time. Furthermore, a more flexible parameterization is possible,
which makes it easier to handle structural and geological model parameters in the
history-matching process.

In this paper we compare EnKF and ES and show that ES indeed provide for an efficient
ensemble-based method for history matching.

history matching, history-matching parameter, application, artificial
intelligence, seismic data, experiment, ensemble, reservoir simulation, evensen,
production data
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Abstract The ensemble Kalman filter (EnKF) is a sequential data assimilation
method that has been demonstrated to be effective for history matching reservoir pro-
duction data and seismic data. To avoid, however, the expense of repeatedly updating
variables and restarting simulation runs, an ensemble smoother (ES) has recently
been proposed. Like the EnKF, the ES obtains all information necessary to compute
a correction to model variables directly from an ensemble of models without the need
of an adjoint code. The success of both methods for history matching reservoir data
without iteration is somewhat surprising since traditional gradient-based methods for
history matching typically require 10 to 30 iterations to converge to an acceptable
minimum. In this manuscript we describe a new iterative ensemble smoother (batch-
EnRML) that assimilates all data simultaneously and compare the performance of
the iterative smoother with the two non-iterative methods and the previously pro-
posed sequential iterative ensemble filter (seq-EnRML). We discuss some aspects of
the use of the ensemble estimate of sensitivity, and show that by sequentially as-
similating data, the nonlinearity of the assimilation problem is substantially reduced.
Although reasonably good data matches can be obtained using a non-iterative ensem-
ble smoother, iteration was necessary to achieve results comparable to the EnKF for
nonlinear problems.
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EnKF for PDE-constrained inverse problems

Consider G : X → Y the parameter-to-output map.

Parameter Identification

Find u given y = G(u) + η.

Classical approach (LSQ):

u∗ = arg min
u∈A

∥y − G(u))∥2
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Abstract
The ensemble Kalman filter (EnKF) was introduced by Evensen in 1994
(Evensen 1994 J. Geophys. Res. 99 10143–62) as a novel method for data
assimilation: state estimation for noisily observed time-dependent problems.
Since that time it has had enormous impact in many application domains
because of its robustness and ease of implementation, and numerical evidence
of its accuracy. In this paper we propose the application of an iterative ensemble
Kalman method for the solution of a wide class of inverse problems. In
this context we show that the estimate of the unknown function that we
obtain with the ensemble Kalman method lies in a subspace A spanned by
the initial ensemble. Hence the resulting error may be bounded above by
the error found from the best approximation in this subspace. We provide
numerical experiments which compare the error incurred by the ensemble
Kalman method for inverse problems with the error of the best approximation
in A, and with variants on traditional least-squares approaches, restricted to
the subspace A. In so doing we demonstrate that the ensemble Kalman method
for inverse problems provides a derivative-free optimization method with
comparable accuracy to that achieved by traditional least-squares approaches.
Furthermore, we also demonstrate that the accuracy is of the same order of
magnitude as that achieved by the best approximation. Three examples are
used to demonstrate these assertions: inversion of a compact linear operator;
inversion of piezometric head to determine hydraulic conductivity in a Darcy
model of groundwater flow; and inversion of Eulerian velocity measurements
at positive times to determine the initial condition in an incompressible fluid.

(Some figures may appear in colour only in the online journal)

1. Introduction

Since its introduction in [11], the ensemble Kalman filter (EnKF) has had enormous impact
on applications of data assimilation to state and parameter estimation, and in particular
in oceanography [13], reservoir modelling [1] and weather forecasting [18]; the books
[12, 22, 30] give further details and references to applications in these fields. Multiple variants
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For z = (u, ξ) ∈ X × Y ,
Define: f (z) = [u,G(u)],
H = [0, I ]. Then, y = Hz + η

Apply EnKF with Y †
n = {y}nℓ=1 and

State: zn+1 =f (zn)

Obs: yn+1 =Hzn+1 + ηn+1

Algorithm:

u
(j)
n+1 = u(j)n + C uG

n (CGG
n + Γ)−1(y − G(u(j)n ) + ξ(j)n )

CGG
n ≡ 1

J − 1

J∑
j=1

(G(u(j)n )− Gn)(G(u(j)n )− Gn)
T , CuG

n ≡ 1

J − 1

J∑
j=1

(u
(j)
n − un)(G(u(j)n )− Gn)

T

Conclusion: Ensemble mean seem to solve LSQ with A = span{u(j)0 }Jj=1.
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Links with iterative regularisation

αn: Regularisation parameter.
Informally, as J → ∞,

un =
1

J

J∑
j=1

u(j)n → mn
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Abstract
We introduce a derivative-free computational framework for approximating
solutions to nonlinear PDE-constrained inverse problems. The general aim is
to merge ideas from iterative regularization with ensemble Kalman methods
from Bayesian inference to develop a derivative-free stable method easy to
implement in applications where the PDE (forward) model is only accessible
as a black box (e.g. with commercial software). The proposed regularizing
ensemble Kalman method can be derived as an approximation of the reg-
ularizing Levenberg–Marquardt (LM) scheme (Hanke 1997 Inverse
Problems 13 79–95) in which the derivative of the forward operator and its
adjoint are replaced with empirical covariances from an ensemble of elements
from the admissible space of solutions. The resulting ensemble method con-
sists of an update formula that is applied to each ensemble member and that
has a regularization parameter selected in a similar fashion to the one in the
LM scheme. Moreover, an early termination of the scheme is proposed
according to a discrepancy principle-type of criterion. The proposed method
can be also viewed as a regularizing version of standard Kalman approaches
which are often unstable unless ad hoc fixes, such as covariance localization,
are implemented. The aim of this paper is to provide a detailed numerical
investigation of the regularizing and convergence properties of the proposed
regularizing ensemble Kalman scheme; the proof of these properties is an open
problem. By means of numerical experiments, we investigate the conditions
under which the proposed method inherits the regularizing properties of the
LM scheme of (Hanke 1997 Inverse Problems 13 79–95) and is thus stable
and suitable for its application in problems where the computation of the
Fréchet derivative is not computationally feasible. More concretely, we study
the effect of ensemble size, number of measurements, selection of initial
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Abstract. The first part of this paper studies a Levenberg–Marquardt scheme for nonlinear
inverse problems where the corresponding Lagrange (or regularization) parameter is chosen
from an inexact Newton strategy. While the convergence analysis of standard implementations
based on trust region strategies always requires the invertibility of the Fréchet derivative of the
nonlinear operator at the exact solution, the new Levenberg–Marquardt scheme is suitable for
ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric
between the range and domain topologies.

Estimates of this type are established in the second part of the paper for ill-posed parameter
identification problems arising in inverse groundwater hydrology. Both transient and steady-state
data are investigated. Finally, the numerical performance of the new Levenberg–Marquardt
scheme is studied and compared to a usual implementation on a realistic but synthetic two-
dimensional model problem from the engineering literature.

1. Introduction

Inverse problems are often solved by approximately minimizing the so-called output least
squares functional

ku� � F(a)k2 (1.1)

where F : DF ⇢ X ! Y is a nonlinear differentiable operator between Hilbert spaces
X and Y , and u� are the given data. In many applications it follows from physical
considerations that u� is a reasonably close approximation of some ideal u = F(a†) in
the range of F , hence the minimization of (1.1).

The Levenberg–Marquardt method is a variant of the Gauss–Newton iteration for the
minimization of (1.1). Given a current approximation an for a† the nonlinear mapping F(a)

in (1.1) is replaced by its linearization around an prior to the minimization process. If the
inverse problem is ill-posed, however, neither the original problem of minimizing (1.1) nor
its linearized counterpart need to have a solution; even worse, if a minimizer does exist, it
can be arbitrarily far off from the true solution a†. This is important in many applications
where one is interested in properties of a† itself and not in F(a†).

To overcome this instability one can proceed along several lines, leading to different
motivations for essentially the same algorithm (cf e.g. Vogel [16]). In the Levenberg–
Marquardt method a trust region is chosen around an, i.e. a ball of radius ⌘n, and the
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sists of an update formula that is applied to each ensemble member and that
has a regularization parameter selected in a similar fashion to the one in the
LM scheme. Moreover, an early termination of the scheme is proposed
according to a discrepancy principle-type of criterion. The proposed method
can be also viewed as a regularizing version of standard Kalman approaches
which are often unstable unless ad hoc fixes, such as covariance localization,
are implemented. The aim of this paper is to provide a detailed numerical
investigation of the regularizing and convergence properties of the proposed
regularizing ensemble Kalman scheme; the proof of these properties is an open
problem. By means of numerical experiments, we investigate the conditions
under which the proposed method inherits the regularizing properties of the
LM scheme of (Hanke 1997 Inverse Problems 13 79–95) and is thus stable
and suitable for its application in problems where the computation of the
Fréchet derivative is not computationally feasible. More concretely, we study
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nonlinear operator at the exact solution, the new Levenberg–Marquardt scheme is suitable for
ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric
between the range and domain topologies.

Estimates of this type are established in the second part of the paper for ill-posed parameter
identification problems arising in inverse groundwater hydrology. Both transient and steady-state
data are investigated. Finally, the numerical performance of the new Levenberg–Marquardt
scheme is studied and compared to a usual implementation on a realistic but synthetic two-
dimensional model problem from the engineering literature.

1. Introduction

Inverse problems are often solved by approximately minimizing the so-called output least
squares functional

ku� � F(a)k2 (1.1)

where F : DF ⇢ X ! Y is a nonlinear differentiable operator between Hilbert spaces
X and Y , and u� are the given data. In many applications it follows from physical
considerations that u� is a reasonably close approximation of some ideal u = F(a†) in
the range of F , hence the minimization of (1.1).

The Levenberg–Marquardt method is a variant of the Gauss–Newton iteration for the
minimization of (1.1). Given a current approximation an for a† the nonlinear mapping F(a)

in (1.1) is replaced by its linearization around an prior to the minimization process. If the
inverse problem is ill-posed, however, neither the original problem of minimizing (1.1) nor
its linearized counterpart need to have a solution; even worse, if a minimizer does exist, it
can be arbitrarily far off from the true solution a†. This is important in many applications
where one is interested in properties of a† itself and not in F(a†).

To overcome this instability one can proceed along several lines, leading to different
motivations for essentially the same algorithm (cf e.g. Vogel [16]). In the Levenberg–
Marquardt method a trust region is chosen around an, i.e. a ball of radius ⌘n, and the

† E-mail address: hanke@math.uni-karlsruhe.de

0266-5611/97/010079+17$19.50 c� 1997 IOP Publishing Ltd 79

Inverse Problems 13 (1997) 79–95. Printed in the UK PII: S0266-5611(97)77122-3

A regularizing Levenberg–Marquardt scheme, with
applications to inverse groundwater filtration problems

Martin Hanke†
Fachbereich Mathematik, Universität Kaiserslautern, D–67653 Kaiserslautern, Germany

Received 9 August 1996

Abstract. The first part of this paper studies a Levenberg–Marquardt scheme for nonlinear
inverse problems where the corresponding Lagrange (or regularization) parameter is chosen
from an inexact Newton strategy. While the convergence analysis of standard implementations
based on trust region strategies always requires the invertibility of the Fréchet derivative of the
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sists of an update formula that is applied to each ensemble member and that
has a regularization parameter selected in a similar fashion to the one in the
LM scheme. Moreover, an early termination of the scheme is proposed
according to a discrepancy principle-type of criterion. The proposed method
can be also viewed as a regularizing version of standard Kalman approaches
which are often unstable unless ad hoc fixes, such as covariance localization,
are implemented. The aim of this paper is to provide a detailed numerical
investigation of the regularizing and convergence properties of the proposed
regularizing ensemble Kalman scheme; the proof of these properties is an open
problem. By means of numerical experiments, we investigate the conditions
under which the proposed method inherits the regularizing properties of the
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and suitable for its application in problems where the computation of the
Fréchet derivative is not computationally feasible. More concretely, we study
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Abstract. The first part of this paper studies a Levenberg–Marquardt scheme for nonlinear
inverse problems where the corresponding Lagrange (or regularization) parameter is chosen
from an inexact Newton strategy. While the convergence analysis of standard implementations
based on trust region strategies always requires the invertibility of the Fréchet derivative of the
nonlinear operator at the exact solution, the new Levenberg–Marquardt scheme is suitable for
ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric
between the range and domain topologies.

Estimates of this type are established in the second part of the paper for ill-posed parameter
identification problems arising in inverse groundwater hydrology. Both transient and steady-state
data are investigated. Finally, the numerical performance of the new Levenberg–Marquardt
scheme is studied and compared to a usual implementation on a realistic but synthetic two-
dimensional model problem from the engineering literature.

1. Introduction

Inverse problems are often solved by approximately minimizing the so-called output least
squares functional

ku� � F(a)k2 (1.1)

where F : DF ⇢ X ! Y is a nonlinear differentiable operator between Hilbert spaces
X and Y , and u� are the given data. In many applications it follows from physical
considerations that u� is a reasonably close approximation of some ideal u = F(a†) in
the range of F , hence the minimization of (1.1).

The Levenberg–Marquardt method is a variant of the Gauss–Newton iteration for the
minimization of (1.1). Given a current approximation an for a† the nonlinear mapping F(a)

in (1.1) is replaced by its linearization around an prior to the minimization process. If the
inverse problem is ill-posed, however, neither the original problem of minimizing (1.1) nor
its linearized counterpart need to have a solution; even worse, if a minimizer does exist, it
can be arbitrarily far off from the true solution a†. This is important in many applications
where one is interested in properties of a† itself and not in F(a†).

To overcome this instability one can proceed along several lines, leading to different
motivations for essentially the same algorithm (cf e.g. Vogel [16]). In the Levenberg–
Marquardt method a trust region is chosen around an, i.e. a ball of radius ⌘n, and the
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Abstract
In this paper we discuss a deterministic form of ensemble Kalman inversion as a
regularization method for linear inverse problems. By interpreting ensemble Kalman
inversion as a low-rank approximation of Tikhonov regularization, we are able to
introduce anewsampling schemebasedon theNyströmmethod that improves practical
performance. Furthermore, we formulate an adaptive version of ensemble Kalman
inversion where the sample size is coupled with the regularization parameter. We
prove that the proposed scheme yields an order optimal regularization method under
standard assumptions if the discrepancy principle is used as a stopping criterion. The
paper concludes with a numerical comparison of the discussed methods for an inverse
problem of the Radon transform.

Mathematics Subject Classification 47A52 · 65J20 · 65C05

1 Introduction

In recent years, ensemble Kalman inversion (EKI) has become a popular tool for
solving inverse problems [28]. EKI has advantages against other iterative methods
in situations where the evaluation of the forward operator is costly, and information
about its adjoint or its derivative is unavailable.
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CLAUDIA SCHILLINGS† AND ANDREW M. STUART†

Abstract. The ensemble Kalman filter (EnKF) is a widely used methodology for state estimation
in partially, noisily observed dynamical systems and for parameter estimation in inverse problems.
Despite its widespread use in the geophysical sciences, and its gradual adoption in many other areas
of application, analysis of the method is in its infancy. Furthermore, much of the existing analysis
deals with the large ensemble limit, far from the regime in which the method is typically used. The
goal of this paper is to analyze the method when applied to inverse problems with fixed ensemble
size. A continuous time limit is derived and the long-time behavior of the resulting dynamical
system is studied. Most of the rigorous analysis is confined to the linear forward problem, where we
demonstrate that the continuous time limit of the EnKF corresponds to a set of gradient flows for
the data misfit in each ensemble member, coupled through a common preconditioner which is the
empirical covariance matrix of the ensemble. Numerical results demonstrate that the conclusions of
the analysis extend beyond the linear inverse problem setting. Numerical experiments are also given
which demonstrate the benefits of various extensions of the basic methodology.

Key words. Bayesian inverse problems, ensemble Kalman filter, optimization
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1. Introduction. The ensemble Kalman filter (EnKF) has had enormous im-
pact on the applied sciences since its introduction in the 1990s by Evensen and cowork-
ers; see [11] for an overview. It is used for both data assimilation problems, where
the objective is to estimate a partially observed time-evolving system sequentially in
time [17], and inverse problems, where the objective is to estimate a (typically dis-
tributed) parameter appearing in a di↵erential equation [25]. Much of the analysis of
the method has focused on the large ensemble limit [24, 23, 13, 20, 10, 22]. However,
the primary reason for the adoption of the method by practitioners is its robustness
and perceived e↵ectiveness when used with small ensemble sizes, as discussed in [2, 3],
for example. It is therefore important to study the properties of the EnKF for fixed
ensemble size, in order to better understand current practice, and to suggest future
directions for development of the method. Such fixed ensemble size analyses are start-
ing to appear in the literature for both data assimilation problems [19, 28] and inverse
problems [15, 14, 16]. In this paper we analyze the EnKF for inverse problems, adding
greater depth to our understanding of the basic method, as formulated in [15], as well
as variants on the basic method which employ techniques such as variance inflation
and localization (see [21] and the references therein), together with new ideas (intro-
duced here) which borrow from the use of the sequential Monte Carlo (SMC) method
for inverse problems introduced in [18].
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Abstract
The standard probabilistic perspective on machine learning gives rise to 
empirical risk-minimization tasks that are frequently solved by stochastic 
gradient descent (SGD) and variants thereof. We present a formulation of 
these tasks as classical inverse or !ltering problems and, furthermore, we 
propose an ef!cient, gradient-free algorithm for !nding a solution to these 
problems using ensemble Kalman inversion (EKI). The method is inherently 
parallelizable and is applicable to problems with non-differentiable loss 
functions, for which back-propagation is not possible. Applications of our 
approach include of"ine and online supervised learning with deep neural 
networks, as well as graph-based semi-supervised learning. The essence of 
the EKI procedure is an ensemble based approximate gradient descent in 
which derivatives are replaced by differences from within the ensemble. We 
suggest several modi!cations to the basic method, derived from empirically 
successful heuristics developed in the context of SGD. Numerical results 
demonstrate wide applicability and robustness of the proposed algorithm.

Keywords: machine learning, deep learning, derivative-free optimization, 
ensemble Kalman inversion, ensemble Kalman !ltering

(Some !gures may appear in colour only in the online journal)

1. Introduction

1.1. The setting

The !eld of machine learning has seen enormous advances over the last decade. These advances 
have been driven by two key elements: (i) the introduction of "exible architectures which have 
the expressive power needed to ef!ciently represent the input–output maps encountered in 
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Abstract. Ensemble Kalman inversion is a parallelizable methodology for solving inverse or
parameter estimation problems. Although it is based on ideas from Kalman filtering, it may be
viewed as a derivative-free optimization method. In its most basic form it regularizes ill-posed
inverse problems through the subspace property: the solution found is in the linear span of the
initial ensemble employed. In this work we demonstrate how further regularization can be imposed,
incorporating prior information about the underlying unknown. In particular we study how to impose
Tikhonov-like Sobolev penalties. As well as introducing this modified ensemble Kalman inversion
methodology, we also study its continuous-time limit, proving ensemble collapse; in the language
of multi-agent optimization this may be viewed as reaching consensus. We also conduct a suite of
numerical experiments to highlight the benefits of Tikhonov regularization in the ensemble inversion
context.

Key words. Tikhonov regularization, ensemble Kalman inversion, Bayesian inverse problems,
long-term behavior
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1. Introduction. Inverse problems are ubiquitous in science and engineering.
They occur in numerous applications, such as recovering permeability from measure-
ment of flow in a porous medium [31, 35] or locating pathologies via medial imaging
[23]. Mathematically speaking, an inverse problem may be formulated as the recovery
of parameter u 2 X from noisy data y 2 Y where the parameter u and data y are
related by

(1.1) y = G(u) + ⌘,

G is an operator from the space of parameters to observations, and ⌘ represents noise;
in this paper we will restrict ourselves to X, Y being separable Hilbert spaces. Inverse
problems are typically solved through two competing methodologies: the determin-
istic optimization approach [13] and the probabilistic Bayesian approach [23]. The
former is based on defining a loss function `(G(u), y) which one aims to minimize; a
regularizer R(u) that incorporates prior information about u is commonly added to
improve the inversion [3]. The Bayesian approach instead views u, y, and ⌘ as random
variables and focuses on the conditional distribution of u|y via Bayes’s theorem as the

⇤Received by the editors February 6, 2019; accepted for publication (in revised form) January 30,
2020; published electronically April 22, 2020.

https://doi.org/10.1137/19M1242331
Funding: The first author’s research was supported by Singapore Ministry of Education Aca-

demic Research Funds Tier 2 grant MOE2016-T2-2-135. The second author’s research was sup-
ported by O�ce of Naval Research grant 00014-17-1-2079 and National Science Foundation grant
DMS-1818977. The third author’s research was supported by Singapore Ministry of Education Tier
1 grant R-146-000-292-114.

†Department of Applied Probability and Statistics, National University of Singapore, Singapore,
117546, Singapore (neil.chada@nus.edu.sg).

‡Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125 (astuart@
caltech.edu).

§Department of Mathematics, National University of Singapore, Singapore, 117543, Singapore
(mattxin@nus.edu.sg).

1263

D
ow

nl
oa

de
d 

05
/1

9/
23

 to
 1

28
.2

43
.2

.2
6 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

No there is no convergence theory for EKI when G is nonlinear!!

EKI 12/34



EKI as optimiser with different loss function

1

Inverse Problems

Ensemble Kalman inversion: a derivative-
free technique for machine learning tasks

Nikola B Kovachki  and Andrew M Stuart

Computing and Mathematical Sciences, California Institute of Technology,  
Pasadena, CA 91125, United States of America

E-mail: nkovachki@caltech.edu and astuart@caltech.edu

Received 10 August 2018, revised 3 April 2019
Accepted for publication 24 April 2019
Published 20 August 2019

Abstract
The standard probabilistic perspective on machine learning gives rise to 
empirical risk-minimization tasks that are frequently solved by stochastic 
gradient descent (SGD) and variants thereof. We present a formulation of 
these tasks as classical inverse or !ltering problems and, furthermore, we 
propose an ef!cient, gradient-free algorithm for !nding a solution to these 
problems using ensemble Kalman inversion (EKI). The method is inherently 
parallelizable and is applicable to problems with non-differentiable loss 
functions, for which back-propagation is not possible. Applications of our 
approach include of"ine and online supervised learning with deep neural 
networks, as well as graph-based semi-supervised learning. The essence of 
the EKI procedure is an ensemble based approximate gradient descent in 
which derivatives are replaced by differences from within the ensemble. We 
suggest several modi!cations to the basic method, derived from empirically 
successful heuristics developed in the context of SGD. Numerical results 
demonstrate wide applicability and robustness of the proposed algorithm.

Keywords: machine learning, deep learning, derivative-free optimization, 
ensemble Kalman inversion, ensemble Kalman !ltering

(Some !gures may appear in colour only in the online journal)

1. Introduction

1.1. The setting

The !eld of machine learning has seen enormous advances over the last decade. These advances 
have been driven by two key elements: (i) the introduction of "exible architectures which have 
the expressive power needed to ef!ciently represent the input–output maps encountered in 

N B Kovachki and A M Stuart

Ensemble Kalman inversion: a derivative-free technique for machine learning tasks

Printed in the UK

095005

INPEEY

© 2019 IOP Publishing Ltd

35

Inverse Problems

IP

1361-6420

10.1088/1361-6420/ab1c3a

Paper

9

1

35

Inverse Problems

IOP

2019

1361-6420/19/095005+35$33.00 © 2019 IOP Publishing Ltd Printed in the UK

Inverse Problems 35 (2019) 095005 (35pp) https://doi.org/10.1088/1361-6420/ab1c3a

EKI for Tikhonov

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. NUMER. ANAL. c� 2020 Society for Industrial and Applied Mathematics
Vol. 58, No. 2, pp. 1263–1294

TIKHONOV REGULARIZATION WITHIN ENSEMBLE KALMAN
INVERSION⇤

NEIL K. CHADA† , ANDREW M. STUART‡ , AND XIN T. TONG§

Abstract. Ensemble Kalman inversion is a parallelizable methodology for solving inverse or
parameter estimation problems. Although it is based on ideas from Kalman filtering, it may be
viewed as a derivative-free optimization method. In its most basic form it regularizes ill-posed
inverse problems through the subspace property: the solution found is in the linear span of the
initial ensemble employed. In this work we demonstrate how further regularization can be imposed,
incorporating prior information about the underlying unknown. In particular we study how to impose
Tikhonov-like Sobolev penalties. As well as introducing this modified ensemble Kalman inversion
methodology, we also study its continuous-time limit, proving ensemble collapse; in the language
of multi-agent optimization this may be viewed as reaching consensus. We also conduct a suite of
numerical experiments to highlight the benefits of Tikhonov regularization in the ensemble inversion
context.

Key words. Tikhonov regularization, ensemble Kalman inversion, Bayesian inverse problems,
long-term behavior
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1. Introduction. Inverse problems are ubiquitous in science and engineering.
They occur in numerous applications, such as recovering permeability from measure-
ment of flow in a porous medium [31, 35] or locating pathologies via medial imaging
[23]. Mathematically speaking, an inverse problem may be formulated as the recovery
of parameter u 2 X from noisy data y 2 Y where the parameter u and data y are
related by

(1.1) y = G(u) + ⌘,

G is an operator from the space of parameters to observations, and ⌘ represents noise;
in this paper we will restrict ourselves to X, Y being separable Hilbert spaces. Inverse
problems are typically solved through two competing methodologies: the determin-
istic optimization approach [13] and the probabilistic Bayesian approach [23]. The
former is based on defining a loss function `(G(u), y) which one aims to minimize; a
regularizer R(u) that incorporates prior information about u is commonly added to
improve the inversion [3]. The Bayesian approach instead views u, y, and ⌘ as random
variables and focuses on the conditional distribution of u|y via Bayes’s theorem as the
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No there is no convergence theory for EKI when G is nonlinear!!
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When to use EKI

Computationally costly nonlinear forward map G : X → Y defined in
black-box fashion on a very large X .

Problems where there is an underlying distribution for the unknown
(for the prior ensemble). Problem needs to be suitably parameterised.

For low-dimensional problems EKI only makes sense if G is
computationally very costly.
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Outline

1 Overview of Ensemble Kalman Inversion (EKI)

2 EKI for Ground Penetrating Radar

3 Additional Examples
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Example: EKI for Ground Penetrating Radar
Work done in collaboration with:
Rania Patsia, Antonis Giannopoulos, Nick Polydorides
School of Engineering, University of Edinburgh.

Applications: Geophysics, Archeology, Defence, Civil Engineering.

Pictures from:
https://archive.epa.gov/esd/archive-geophysics/web/html/ground-penetrating_radar.html

http://www.worksmartinc.net
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Practical approach for GPR data
Data migration

From https: // doi. org/ 10. 1051/ e3sconf/ 20183503004

Limitations: Unrealistic modelling assumptions (i.e. constant velocity),
no measures of uncertainty.
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Full-Waveform inversion.

Maxwell equations:

∇× E = −µ
∂H

∂t
, ∇ · ϵE = 0

∇×H = σE+ ϵ
∂E

∂t
+ Js , ∇ · µH = 0

Forward map

u = (ϵ, µ, σ) −→ G(u) = {Vr (t) ∝ Ey (xr , t)}Rr=1

Aim: Infer u† given measurements, y , of G(u†).
Existing Approaches:

Deterministic: ∥y − G(u)∥2 +R(u) → min

with some choice of regulariser R(u).

Bayesian (MAP): P(u|y) ∝ P(y − G(u))P(u)
for some prior P(u).

EKI 17/34



High-contrast targets

Targets that will induce a high contrast in material properties

Crucial: choice of R(u) (or P(u)), e.g. edge-preserving regulariser/prior.

EKI 18/34



Shape reconstruction of Perfect Electric Conductor (PEC) targets.
Incorporate the target region via Maxwell Eqs’ boundary conditions:

PEC Boundary Conditions:

n× E = 0, n ·H = 0, on ∂Ω

where ∂Ω is the boundary of the PEC region Ω.

Shape Inversion: Infer Ω given measurements, y , of {Vr (t)}Rr=1 = G(Ω).

Level-set parameterisations of targets

We introduce an artificial level-set function u : R3 → R and define the target via

Ω =
{
x ∈ R3

∣∣u(x) > α
}

Forward map:

u Ω {Vr (t)}Rr=1

u > α Max Eqs

G(u)

EKI 19/34
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Use EKI to infer an optimal level-set function
Gaussian random fields (top) for the initial ensemble

u
(j)
0 ∼ N(0, C)

where C is a Matérn covariance operator.
Bottom: Regions defined via the truncation of the maps above with α = 1.75.

Goal: Apply EKI on the ensemble of level-set functions:

u
(j)
n+1 = u(j)n + C uG

n (CGG
n + αnΓ)

−1(y − G(u(j)n ) +
√
αnξ

(j)
n )

EKI 20/34



Forward map:

u Ω {Vr (t)}Rr=1

u > α gprMax

G(u)

gprMax: FDTM with built-in GSSI antenna model.
We assume targets are immersed in concrete (dispersive media).

EKI 21/34



Synthetic Experiment I

Simulation domain: 20cm x 20cm x 25cm.

Time window: 4ns

No. Cells: 200 x 200x 250= 107

Concrete domain: : 20cm x 20cm x 16.3cm

Measurements: 16 traces (spaced by 2.5cm)

We use gprMax to simulate 16 traces and we
corrupt them with 2%.

We apply EKI with J = 103 samples.

EKI 22/34



EKI samples
Top: Prior LS function. Middle: Prior LS function + region.
Bottom: posterior LS function + region.
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Fit to the measurements
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EKI Posterior Estimates
Probability for taget: P(x) = P(u(x) > α)
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Computational Cost (Sulis -Tier 2 Midlands Plus)

Prediction step using 3-traces simulation runs (gprMax).
EKI algorithm needs between 10 and 20 iterations. We use J = 500 samples.

Sulis’ compute partition

1 core ≈ 49 mins/ sim. Total time is unfeasible

1 node (128 cores) using MPI run 4 tasks (30 cpus) ≈ 4.3 mins/sim.
Total time ≈ 22 days

30 full nodes using MPI run on each node. Total time ≈ 18 hrs

Sulis’ gpu partition

1 GPU +MPI (with 15 CPUs each ) 0.45 sec/sim. Total time ≈ 3.9 days.

30 GPUs Total time ≈ 3.1 hrs.

C. Warren, A. Giannopoulos, A. Gray, I. Giannakis, A, Patterson, L. Wetter, A. Hamrah

A CUDA-based GPU engine for gprMax: Open source FDTD electromagnetic simulation software

Computer Physics Communications. 237 (2019) 208-218
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Experiment with real data.

Prediction of traces (we need to inflate error covariance)
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EKI for Bayesian Inverse Problems

Recall
y = G(u) + η

Bayes’ rule:

P
(
u|y

)
∝ exp

[
−1

2
||Γ−1/2(y−G(u))||2

]
P(u)

Inverse Problems
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Abstract
We propose a new regularisation strategy for the classical ensemble Kalman
inversion (EKI) framework. The strategy consists of: (i) an adaptive choice for
the regularisation parameter in the update formula in EKI, and (ii) criteria for the
early stopping of the scheme. In contrast to existing approaches, our parameter
choice does not rely on additional tuning parameters which often have severe
effects on the ef!ciency of EKI. We motivate our approach using the interpre-
tation of EKI as a Gaussian approximation in the Bayesian tempering setting
for inverse problems. We show that our parameter choice controls the sym-
metrised Kullback–Leibler divergence between consecutive tempering mea-
sures. We further motivate our choice using a heuristic statistical discrepancy
principle. We test our framework using electrical impedance tomography with
the complete electrode model. Parameterisations of the unknown conductivity
are employed which enable us to characterise both smooth or a discontinuous
(piecewise-constant) !elds. We show numerically that the proposed regularisa-
tion of EKI can produce ef!cient, robust and accurate estimates, even for the
discontinuous case which tends to require larger ensembles and more iterations
to converge. We compare the proposed technique with a standard method of
choice and demonstrate that the proposed method is a viable choice to address
computational ef!ciency of EKI in practical/operational settings.

Keywords: ensemble Kalman inversion, parameter identi!cation, derivative-
free inversions

(Some !gures may appear in colour only in the online journal)
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Tempering:

Introduce {Φn}Nn=0 such that 0 = Φ0 < Φ1 · · · < ΦN+1 = 1 and define

Pn+1(u) ∝ Pn(u) exp
[
− 1

2
||(αnΓ)

−1/2(y − G(u))||2
]

αn = [Φn − Φn−1]
−1. (Note that

∑N
n=1 α

−1
n = 1)

Suppose π0 = N(m0,C0) is a Gaussian approximation.

πn+1(u) ∝ πn(u) exp
[
− 1

2
||(αnΓ)

−1/2(y − G(mn)− DG(mn)(u −mn))||2
]

EKI will produce a ensemble of Gaussian approximations to πn+1(u)
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Ensemble Kalman Sampling (EKS)
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Interacting Langevin Di↵usions: Gradient Structure and Ensemble Kalman
Sampler⇤

Alfredo Garbuno-Inigo† , Franca Ho↵mann† , Wuchen Li‡ , and Andrew M. Stuart†

Abstract. Solving inverse problems without the use of derivatives or adjoints of the forward model is highly
desirable in many applications arising in science and engineering. In this paper we propose a new
version of such a methodology, a framework for its analysis, and numerical evidence of the practicality
of the method proposed. Our starting point is an ensemble of overdamped Langevin di↵usions
which interact through a single preconditioner computed as the empirical ensemble covariance. We
demonstrate that the nonlinear Fokker–Planck equation arising from the mean-field limit of the
associated stochastic di↵erential equation (SDE) has a novel gradient flow structure, built on the
Wasserstein metric and the covariance matrix of the noisy flow. Using this structure, we investigate
large time properties of the Fokker–Planck equation, showing that its invariant measure coincides
with that of a single Langevin di↵usion, and demonstrating exponential convergence to the invariant
measure in a number of settings. We introduce a new noisy variant on ensemble Kalman inversion
(EKI) algorithms found from the original SDE by replacing exact gradients with ensemble di↵erences;
this defines the ensemble Kalman sampler (EKS). Numerical results are presented which demonstrate
its e�cacy as a derivative-free approximate sampler for the Bayesian posterior arising from inverse
problems.

Key words. ensemble Kalman inversion, Kalman–Wasserstein metric, gradient flow, mean-field Fokker–Planck
equation

AMS subject classifications. 65N21, 35Q84, 62F15, 65C30, 65C35, 82C80

DOI. 10.1137/19M1251655

1. Problem setting.

1.1. Background. Consider the inverse problem of finding u 2 Rd from y 2 RK , where

y = G(u) + ⌘,(1.1)

G : Rd ! RK is a known nonlinear forward operator, and ⌘ is the unknown observational
noise. Although ⌘ itself is unknown, we assume that it is drawn from a known probability

⇤Received by the editors March 25, 2019; accepted for publication (in revised form) by Y. Bakhtin October 10,
2019; published electronically February 4, 2020.
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postdoctoral instructorship. The work of the third author was supported by AFOSR MURI FA9550-18-1-0502.

†Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125
(agarbuno@caltech.edu, http://agarbuno.github.io/; fkoh@caltech.edu, https://francaho↵mann.wordpress.com/;
astuart@caltech.edu, http://stuart.caltech.edu/).
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Mean-Field

Ensemble Kalman Methods: A Mean Field Perspective

Edoardo Calvello⇤ , Sebastian Reich† , and Andrew M. Stuart‡

Abstract. This paper provides a unifying mean field based framework for the derivation and analysis of ensemble
Kalman methods. Both state estimation and parameter estimation problems are considered, and
formulations in both discrete and continuous time are employed. For state estimation problems both
the control and filtering approaches are studied; analogously, for parameter estimation (inverse)
problems the optimization and Bayesian perspectives are both studied. The approach taken unifies
a wide-ranging literature in the field, provides a framework for analysis of ensemble Kalman methods,
and suggests open problems.

1. Introduction. The ensemble Kalman methodology is an innovative and flexible set
of tools which can be used for both state estimation in dynamical systems and parameter
estimation for generic inverse problems. It has primarily been developed by practitioners in the
geophysical sciences, with notable impact on the fields of oceanography, oil reservoir simulation
and weather forecasting. Despite its wide adoption in the geosciences, the methodology is hard
to analyze and firm theoretical foundations are only now starting to emerge. The purpose of
this article is twofold: a) to describe a mathematical framework for the analysis of ensemble
Kalman methods, describing what is known and highlighting the many open mathematical
challenges in the field; b) to provide a literature survey which bridges the domain-specific
development of the methodology with emerging mathematical analyses. In so doing we will
also highlight the flexibility of the methodology for use in widespread applications, beyond its
historical development in the geosciences.

The material is organized around the two separate themes of state estimation and inverse
problems; within each, both discrete time and continuous time approaches are explained. The
novel perspective which underlies all of this material is the derivation of ensemble Kalman
methods as particle approximations of carefully designed mean-field models. The relation-
ship of these mean-field models to exact transport models, for Gaussian problems, serves to
motivate their form.

In Subsection 1.1 we overview the history of ensemble Kalman methods. Subsection 1.2
describes the organization of the paper. In Subsection 1.3 we make brief remarks about
the pseudo-code that we make available as a supplementary resource for this paper. The
introduction concludes, in Subsection 1.4, with a summary of the notation that we adopt
throughout the paper.

1.1. Historical Context. The Kalman filter (KF) is arguably the first setting in which
the integration of observational data with a dynamical system was considered, leading to both
discrete time (Kalman, 1960) and continuous time (Kalman & Bucy, 1961) formulations; see
Welch et al. (1995) for an overview. The Kalman filter applies only in the setting of linear
Gaussian dynamics and observation; it computes the distribution of the state of the dynamical

⇤California Institute of Technology, Pasadena, CA 91125, USA (e.calvello@caltech.edu).
†Institut für Mathematik, Universität Potsdam, D-14476 Potsdam, Germany (sebastian.reich@uni-potsdam.de).
‡California Institute of Technology, Pasadena, CA 91125, USA (astuart@caltech.edu).
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Ensemble Kalman Sampling (EKS)
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to analyze and firm theoretical foundations are only now starting to emerge. The purpose of
this article is twofold: a) to describe a mathematical framework for the analysis of ensemble
Kalman methods, describing what is known and highlighting the many open mathematical
challenges in the field; b) to provide a literature survey which bridges the domain-specific
development of the methodology with emerging mathematical analyses. In so doing we will
also highlight the flexibility of the methodology for use in widespread applications, beyond its
historical development in the geosciences.

The material is organized around the two separate themes of state estimation and inverse
problems; within each, both discrete time and continuous time approaches are explained. The
novel perspective which underlies all of this material is the derivation of ensemble Kalman
methods as particle approximations of carefully designed mean-field models. The relation-
ship of these mean-field models to exact transport models, for Gaussian problems, serves to
motivate their form.

In Subsection 1.1 we overview the history of ensemble Kalman methods. Subsection 1.2
describes the organization of the paper. In Subsection 1.3 we make brief remarks about
the pseudo-code that we make available as a supplementary resource for this paper. The
introduction concludes, in Subsection 1.4, with a summary of the notation that we adopt
throughout the paper.

1.1. Historical Context. The Kalman filter (KF) is arguably the first setting in which
the integration of observational data with a dynamical system was considered, leading to both
discrete time (Kalman, 1960) and continuous time (Kalman & Bucy, 1961) formulations; see
Welch et al. (1995) for an overview. The Kalman filter applies only in the setting of linear
Gaussian dynamics and observation; it computes the distribution of the state of the dynamical
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Ensemble Kalman Sampling (EKS)
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Interacting Langevin Di↵usions: Gradient Structure and Ensemble Kalman
Sampler⇤

Alfredo Garbuno-Inigo† , Franca Ho↵mann† , Wuchen Li‡ , and Andrew M. Stuart†

Abstract. Solving inverse problems without the use of derivatives or adjoints of the forward model is highly
desirable in many applications arising in science and engineering. In this paper we propose a new
version of such a methodology, a framework for its analysis, and numerical evidence of the practicality
of the method proposed. Our starting point is an ensemble of overdamped Langevin di↵usions
which interact through a single preconditioner computed as the empirical ensemble covariance. We
demonstrate that the nonlinear Fokker–Planck equation arising from the mean-field limit of the
associated stochastic di↵erential equation (SDE) has a novel gradient flow structure, built on the
Wasserstein metric and the covariance matrix of the noisy flow. Using this structure, we investigate
large time properties of the Fokker–Planck equation, showing that its invariant measure coincides
with that of a single Langevin di↵usion, and demonstrating exponential convergence to the invariant
measure in a number of settings. We introduce a new noisy variant on ensemble Kalman inversion
(EKI) algorithms found from the original SDE by replacing exact gradients with ensemble di↵erences;
this defines the ensemble Kalman sampler (EKS). Numerical results are presented which demonstrate
its e�cacy as a derivative-free approximate sampler for the Bayesian posterior arising from inverse
problems.

Key words. ensemble Kalman inversion, Kalman–Wasserstein metric, gradient flow, mean-field Fokker–Planck
equation
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1. Problem setting.

1.1. Background. Consider the inverse problem of finding u 2 Rd from y 2 RK , where

y = G(u) + ⌘,(1.1)

G : Rd ! RK is a known nonlinear forward operator, and ⌘ is the unknown observational
noise. Although ⌘ itself is unknown, we assume that it is drawn from a known probability
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Mean-Field

Ensemble Kalman Methods: A Mean Field Perspective

Edoardo Calvello⇤ , Sebastian Reich† , and Andrew M. Stuart‡

Abstract. This paper provides a unifying mean field based framework for the derivation and analysis of ensemble
Kalman methods. Both state estimation and parameter estimation problems are considered, and
formulations in both discrete and continuous time are employed. For state estimation problems both
the control and filtering approaches are studied; analogously, for parameter estimation (inverse)
problems the optimization and Bayesian perspectives are both studied. The approach taken unifies
a wide-ranging literature in the field, provides a framework for analysis of ensemble Kalman methods,
and suggests open problems.

1. Introduction. The ensemble Kalman methodology is an innovative and flexible set
of tools which can be used for both state estimation in dynamical systems and parameter
estimation for generic inverse problems. It has primarily been developed by practitioners in the
geophysical sciences, with notable impact on the fields of oceanography, oil reservoir simulation
and weather forecasting. Despite its wide adoption in the geosciences, the methodology is hard
to analyze and firm theoretical foundations are only now starting to emerge. The purpose of
this article is twofold: a) to describe a mathematical framework for the analysis of ensemble
Kalman methods, describing what is known and highlighting the many open mathematical
challenges in the field; b) to provide a literature survey which bridges the domain-specific
development of the methodology with emerging mathematical analyses. In so doing we will
also highlight the flexibility of the methodology for use in widespread applications, beyond its
historical development in the geosciences.

The material is organized around the two separate themes of state estimation and inverse
problems; within each, both discrete time and continuous time approaches are explained. The
novel perspective which underlies all of this material is the derivation of ensemble Kalman
methods as particle approximations of carefully designed mean-field models. The relation-
ship of these mean-field models to exact transport models, for Gaussian problems, serves to
motivate their form.

In Subsection 1.1 we overview the history of ensemble Kalman methods. Subsection 1.2
describes the organization of the paper. In Subsection 1.3 we make brief remarks about
the pseudo-code that we make available as a supplementary resource for this paper. The
introduction concludes, in Subsection 1.4, with a summary of the notation that we adopt
throughout the paper.

1.1. Historical Context. The Kalman filter (KF) is arguably the first setting in which
the integration of observational data with a dynamical system was considered, leading to both
discrete time (Kalman, 1960) and continuous time (Kalman & Bucy, 1961) formulations; see
Welch et al. (1995) for an overview. The Kalman filter applies only in the setting of linear
Gaussian dynamics and observation; it computes the distribution of the state of the dynamical
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Outline

1 Overview of Ensemble Kalman Inversion (EKI)

2 EKI for Ground Penetrating Radar

3 Additional Examples
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Additional examples of EKI+level-set:
Resin Infusion of Reinforcements

EKI 31/34



EKI+level-set: Electrical Resistivity Tomography

Field cross borehole sandstone stratigraphy
Eggborough, UK.
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EKI+level-set: Magnetic Resonance Elastography

Characterisation of elastic properties of biological tissues as well as the
presence of malignancies.
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Thank you

https://www.maths.nottingham.ac.uk/personal/pmzmi/publications/
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