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Statement of an innocent looking problem

Optimization

Find the unconstrained minimum of a function π(x) in Rd

min
x∈Rd

π(x)
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Numerous applications

(a) Image classification

(b) Image reconstruction

K. C. Zygalakis (University of Edinburgh) ODEs and optimization UCL, 23/05/2023 5 / 42



Gradient flow

Consider the differential equation:

dx

dt
= −∇π(x).

This has the interesting property that

dπ(x)

dt
= −‖∇π(x)‖2 ⇒ lim

t→∞
x(t) = x∗,

where x∗ is a (unique) minimizer. This makes the equation above central
(or at least the simplest choice) for optimization purposes.
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In an ideal world!!!

There is nothing to be done...

Discretize the candidate differential equations and go
I Optimization: Go to infinity as quickly as possible (in terms of function

evaluations).
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In real life...

Starting from the differential equation and discretising might not be
enough in terms of mimicking the rate of convergence to equilibrium.

Going to infinity as quickly as possible implies that you can use
arbitrary large time-steps in your numerical discretization.

Reality unfortunately comes back to bite you, as time-steps
restrictions appear once you discretize your differential equation.
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Optimization: Continuous case

Gradient flow:

ẋ +∇f (x) = 0

Momentum equation:

ẍ + b̄
√
mẋ +∇f (x) = 0

Quadratic case: f (x) = 1
2x

TQx , σ(Q) ∈ [m, L]

Nonlinear case: f (x) ∈ F(m, L)

[1] W. Su, S. Boyd, E. J. Candés NIPS 2014: 2510-2518, (2014).
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Continuous time formulation

ξ̇(t) = Āξ(t) + B̄u(t),

y(t) = C̄ξ(t),

u(t) = ∇f (y(t)).

where ξ(t) ∈ Rn is the state, y(t) ∈ Rd(d ≤ n) the output, and
u(t) = ∇f (y(t)) the continuous feedback input. Fixed points of the
system satisfy

0 = Āξ?, y? = C̄ξ?, u? = ∇f (y?);

in our context u? = 0 and y? = x?.

[2] M.Fazlyab, A. Ribeiro, M. Morari, V. M. Preciado, SIAM J. Optim., 28(3), 2654–2689, (2018).
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Examples

1 Gradient flow: ẋ = −∇f (x).

Ā = 0d×d , B̄ = −Id×d , C̄ = Id×d .

2 Momentum equation: ẍ + b̄
√
mẋ +∇f (x) = 0.

Ā =

[
−b̄
√
mId 0d√

mId 0d

]
, B̄ =

[
−(1/

√
m)Id

0d

]
, C̄ =

[
0d Id

]
.
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Quadratic case

The continuous time formulation now becomes

ξ̇(t) = (Ā + B̄QC̄ )ξ(t)

Solution is given by

ξ(t) = e(Ā+B̄QC̄)tξ(0)

To deduce a convergence rate to the minimizer we need to
understand the spectral properties of e(Ā+B̄QC̄)t
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Quadratic case: Gradient flow vs momentum equations

Gradient flow: rate of convergence e−2mt

Momentum equation: rate of convergence e−g(b̄)
√
mt

0 1 2 3 4 5
0

0.5

1

1.5

2

Clearly using the first order dynamics is suboptimal in terms of
convergence
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The class F(m, L)

1 〈x − y ,∇f (x)−∇f (y)〉 ≥ m ‖x − y‖2.

2 ‖∇f (x)−∇f (y)‖2 ≤ L2 ‖x − y‖2.

3 mL
m+L ‖x − y‖2 + 1

m+L ‖∇f (x)−∇f (y)‖2 ≤ (∇f (x)−∇f (y))T (x − y)

An equivalent way of expressing these equations are the following quadratic
constraints:

1

[
x − y

∇f (x)−∇f (y)

]T [−m
2 Id

1
2 Id

1
2 Id 0d

] [
x − y

∇f (x)−∇f (y)

]
≥ 0.

2

[
x − y

∇f (x)−∇f (y)

]T [
L2Id 0d

0d −Id

] [
x − y

∇f (x)−∇f (y)

]
≥ 0.

3

[
x − y

∇f (x)−∇f (y)

]T [− mL
m+L Id

1
2 Id

1
2 Id − 1

m+L Id

] [
x − y

∇f (x)−∇f (y)

]
≥ 0.
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(Continuous) Lyapunov functions

Consider

V (ξ(t), t) = α(t)(f (y(t))− f (y∗)) + (ξ(t)− ξ∗)P(t)(ξ(t)− ξ∗)

and assume that we can find α(t),P(t) � 0 such that

V (ξ(t), t) ≤ V (ξ(t0), t0)

then
0 ≤ f (y(t))− f (y∗) ≤ V (ξ(t0, t0))/α(t) = O(1/α(t))
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A small calculation

By differentiating the Lyapunov function we have

V̇ = α̇(t)(f (y(t))− f (y∗))

+ α(t)(∇f (y(t))−∇f (y∗))T ẏ(t)

+ 2(ξ(t)− ξ∗)TP(t)ξ̇(t)

+ (ξ(t)− ξ∗)T Ṗ(t)(ξ(t)− ξ∗)T

Setting e(t) = [(ξ(t)− ξ∗)T (u(t)− u∗)
T ] and using the strong convexity

properties of f (f ∈ Fm,L) we can obtain

V̇ (t) ≤ eT (t)(· · · )e(t)

and if the matrix inside the parenthesis is negative definite then we are
done.
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A theorem for the (continuous) Lyapunov function

(Continuous) convergence to the minimizer
Suppose that there exist λ > 0, P̄ � 0, and σ ≥ 0 that satisfy

T̄ = M̄(0) + M̄(1) + λM̄(2) + σM̄(3) � 0

where

M̄(0) =

[
P̄Ā + ĀT P̄ + λP̄ P̄B̄

B̄T P̄ 0

]
,

M̄(1) =
1

2

[
0 (C̄ Ā)T

C̄ Ā C̄ B̄ + B̄T C̄T

]
,

M̄(2) =

[
C̄T 0

0 Id

] [
−m

2
Id

1
2
Id

1
2
Id 0

] [
C̄ 0
0 Id

]
,

M̄(3) =

[
C̄T 0

0 Id

] [− mL
m+L

Id
1
2
Id ,

1
2
Id − 1

m+L
Id

] [
C̄ 0
0 Id

]
.

Then the following inequality holds for f ∈ Fm,L, t ≥ 0,

f (y(t))− f (y?) ≤ e−λt
(
f (y(0))− f (y?) + (ξ(0)− ξ?)T P̄(ξ(0)− ξ?)

)
.
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Nonlinear case: Gradient flow vs momentum equations

Gradient flow: Again we have that λ = 2m.

Momentum equations: We have that λ = g̃(b̄)
√
m

0 1 2 3 4
0

0.5

1

1.5

2

1 You lose some of the rate you can prove between the linear and the
nonlinear case

2 Still the momentum dynamics accelerate the convergence to equilibrium
(
√
m� m when m� 1.)

3 One should discretise the momentum dynamics.
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Discrete time

ξk+1 = Aξk + Buk ,

uk = ∇f (yk),

yk = Cξk ,

xk = Eξk .
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A family of algorithms

xk+1 = xk + β(xk − xk−1)− α∇f (yk),

yk = xk + γ(xk − xk−1),

1 For β = γ = 0 we recover the gradient descent

xk+1 = xk − α∇f (xk).

2 For γ = β we recover the Nesterov method.

3 For γ = 0, β 6= 0 we recover the heavy ball method.
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Quadratic case

The continuous time formulation now becomes

ξk+1 = (A + BQC )ξk

Solution is given by

ξk = (A + BQC )kξ(0)

To deduce a convergence rate to the minimizer we need to
understand the spectral properties of (A + BQC )
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Quadratic case: Convergence rates

‖ξk − ξ∗‖2 ≤ ρ2k ‖ξ0 − ξ∗‖2

1 Gradient descent: α = 2
m+L , and ρ = κ−1

κ+1

2 Nesterov method: α = 4
3L+m , β =

√
3κ+1−2√
3κ+1+2

, and ρ = 1− 2√
3κ+1

3 Heavy ball: α = 4
(
√
L+
√
m)2

, β =
(√

κ−1√
κ+1

)2
, and ρ =

√
κ−1√
κ+1
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(Discrete) Lyapunov functions

Consider

Vk(ξ) = ρ−2k
(
a0(f (xk)− f (x?)) + (ξk − ξ?)T P(ξk − ξ?)

)
,

and assume that we can find a0 > 0,P � 0 such that

Vk+1(ξk+1) ≤ Vk(ξk),

we can then conclude

f (xk)− f (x?) ≤ ρ2k V0(ξ0)

a0
.

If ρ < 1, we have found a convergence rate for f (xk) towards the optimal
value f (x?).
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A theorem for the (discrete) Lyapunov function

(Discrete) convergence to miminizer
Suppose that there exist a0 > 0, P � 0, ` > 0, and ρ ∈ [0, 1) such that

T = M(0) + a0ρ
2M(1) + a0(1− ρ2)M(2) + `M(3) � 0,

where

M(0) =

[
AT PA− ρ2P AT PB

BT PA BT PB

]
, M(1) = N(1) + N(2)

, M(2) = N(1) + N(3)
, M(3) = N(4)

,

with

N(1) =

[
EA− C EB

0 Id

]T [ L
2
Id

1
2
Id

1
2
Id 0

] [
EA− C EB

0 Id

]
,

N(2) =

[
C − E 0

0 Id

]T [−m
2
Id

1
2
Id

1
2
Id 0

] [
C − E 0

0 Id

]
,

N(3) =

[
CT 0

0 Id

] [
−m

2
Id

1
2
Id

1
2
Id 0

] [
C 0
0 Id

]
,

N(4) =

[
CT 0

0 Id

] [− mL
m+L

Id
1
2
Id

1
2
Id − 1

m+L
Id

] [
C 0
0 Id

]
.

Then, for f ∈ Fm,L, the sequence {xk} satisfies f (xk )− f (x?) ≤ a0(f (x0)−f (x?))+(ξ0−ξ
?)T P(ξ0−ξ

?)
a0

ρ2k .
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Nesterov method

We introduce δ =
√
mα and dk = 1

δ (xk − xk−1), so we can re-write our
algorithm as:

dk+1 = βdk −
α

δ
∇f (yk),

xk+1 = xk + δβdk − α∇f (yk),

yk = xk + δβdk .

Setting ξk = [dTk , x
T
k ]T ∈ R2d we can express the algorithm in the discrete

form with

A =

[
βId 0
δβId Id

]
, B =

[
−(α/δ)Id
−αId

]
, C =

[
δβId Id

]
, E =

[
0 Id

]
.
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Dimension reduction

The matrix A is a a Kronecker product of a 2× 2 matrix and Id ,

A =

[
β 0
δβ 1

]
⊗ Id ;

The matrices B, C and E have a similar Kronecker product structure.

It is then natural to consider symmetric matrices P of the form

P = P̂ ⊗ Id , P̂ =

[
p11 p12

p12 p22

]
,

T will also have a Kronecker product structure

T = T̂ ⊗ Id , T̂ =

t11 t12 t13

t12 t22 t23

t13 t23 t33

 .
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Structure of T̂

We have

t11 = β2p11 + 2δβ2p12 + δ2β2p22 − ρ2p11 − δ2β2m/2,

t12 = βp12 + δβp22 − ρ2p12 − δβm/2 + ρ2δβm/2,

t13 = −δ−1αβp11 − 2αβp12 − δαβp22 + δβ/2,

t22 = p22 − ρ2p22 −m/2 + ρ2m/2,

t23 = −δ−1αp12 − αp22 + 1/2− ρ2/2,

t33 = δ−2α2p11 + 2δ−1α2p12 + α2p22 + α2L/2− α.

Our task is to find ρ ∈ [0, 1), p11, p12, and p22 that lead to T̂ � 0 and
P̂ � 0 (which imply T � 0 and P � 0 ).
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Solution
The algebra becomes simpler if we represent β and ρ2 as:

β = 1− bδ, ρ2 = 1− rδ.

Note that we are interested in r ∈ (0, 1/δ] so as to get ρ2 ∈ [0, 1). Going through
the algebra we find

P̂ =

[
p11 p12

p12 p22

]
=

m

2

[
(1− rδ)2 r(1− rδ)
r(1− rδ) r2

]
, α ≤ 1

L
, r ≤ 1

as well as Ξ = 0 where

Ξ := Ξδ(r , b) = (r + δ)(1− δ2)b2 − 2(1 + r2)(1− δ2)b + (r3 − 3r2δ + 3r − δ).

Since δ =
√
mα and α ≤ L−1, this implies that

ρ2 = 1− r√
κ

hence the Nesterov algorithm maintains the acceleration of the original
differential equation.
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Convergence of the algorithm

Theorem

With the choices of parameters as in the previous slide the matrix T is
negative semi-definite. As a result, for any x−1, x0, the sequence

ρ−2k
(
f (xk)− f (x?) + [dTk , x

T
k − xT? ]P [dTk , x

T
k − xT? ]T

)
decreases monotonically, which, in particular, implies

f (xk)− f (x?) ≤ Cρ2k

with

C = f (x0)− f (x?) +
m

2

∥∥∥∥1− rδ

δ
(x0 − x−1) + r(x0 − x?)

∥∥∥∥2

.

K. C. Zygalakis (University of Edinburgh) ODEs and optimization UCL, 23/05/2023 30 / 42



Overview

1 Introduction
Candidate differential equation
Main approach

2 ODEs and optimization methods
Continuous time
Discrete time
Analysis of Nesterov method

3 What do we gain by this analogy?
Structural conditions and additive Runge-Kutta methods
Alternative Lyapunov functions and improved convergence rates

4 Conclusions

K. C. Zygalakis (University of Edinburgh) ODEs and optimization UCL, 23/05/2023 31 / 42



Connection with the ODE

Convergence between discrete and continuous Lyapunov function

Fix the parameter b̄ > 0 and the initial conditions x(0), ẋ(0) for the
momentum equations. For small h > 0, consider the Nesterov method
with parameters α = h2 and β = βh = 1− b̄

√
mh + o(h). Assume that

the initial points x−1, x0 are such that, as h ↓ 0, x0 → x(0) and
(1/h)(x0 − x−1)→ ẋ(0). Then, in the limit kh→ t,

1 xk → x(t) and (1/h)(xk+1 − xk)→ ẋ(t).

2 The discrete Lyapunov function converges to the continuous
Lyapunov function
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Optimization algorithms as integrators

d

dt
z = g [1](z)+g [2](z)+g [3](z) :=

[
−b̄
√
mv

0

]
+

[
− 1√

m
∇f (x)

0

]
+

[
0√
mv

]
;

Nesterov method can be expressed as

Zk,1 = zk ,

Zk,2 = zk + hg [1](Zk,1),

Zk,3 = zk + hg [1](Zk,1) + hg [3](Zk,2),

Zk,4 = zk + hg [1](Zk,1) + hg [3](Zk,2) + hg [2](Zk,3),

zk+1 = zk + hg [1](Zk,1) + hg [2](Zk,3) + hg [3](Zk,4).
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Is consistency enough?

1 From an intuitive point of view the previous theorem is obvious, i.e
you start with and ODE you discretise it and the numerical algorithm
inherits its properties for some finite h

2 The key however is how large this h can be, while maintaining the
negative definiteness of the matrix T .

3 From consistency in order to achieve acceleration one needs to be able
to preserve the negative definiteness of T for time steps h ≤ cL−1/2

4 What is special about Nesterov?
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Structural conditions of integrators

xk+1 = xk + β(xk − xk−1)− α∇f (yk),

yk = xk + γ(xk − xk−1),

Key quantity c := t11/(mδ), when γ = 0, c = · · ·+ δ(κ− 1)β2/2.

For acceleration, δ has to be O(1/
√
κ) which makes it impossible for

c to be ≤ 0.

Presence of κ in t11 relates to the appearance of L in the matrix N(1)

This can be indeed eliminated if EA− C = 0

In words: the point yk = Cξk where the gradient is evaluated has to
coincide with the point xk+1 = EAξk that the algorithm would yield if
uk = ∇f (yk) happened to vanish

[3] L. Lessard, B. Recht, A. Packard, SIAM J. Optim., 26(1), 57–95. (2016)
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Revisiting the Lyapunov function

V (ξ, t) = eλt
(
f (y(t))− f (y?) + (ξ(t)− ξ?)T P̄(ξ(t)− ξ?)

)
We can try to relax the condition P̄ � 0

Through strong convexity we know that

f (y(t))− f (y?) ≥ m

2
‖y(t)− y?‖2.

Hence

V (ξ, t) ≥ eλt
[
(ξ(t)− ξ?)T

(m
2
C̄T C̄ + P̄

)
(ξ(t)− ξ?)

]
If we can still establish that V (ξ, t) is non-increasing we are good as
long C̄T C̄ + P̄ � 0
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Continuous case revisited

Improved (continuous) convergence to minimizer

Suppose that there exist λ > 0, σ ≥ 0 and a symmetric matrix P̄ with
P̃ := P̄ + (m/2)C̄T C̄ � 0, that satisfy

T̄ = M̄(0) + M̄(1) + λM̄(2) + σM̄(3) � 0

Then the following inequality holds for f ∈ Fm,L, t ≥ 0

‖y(t)− y∗‖2 ≤ maxσ(C̄T C̄ ) ‖ξ(t)− ξ∗‖
P̃
≤ maxσ(CTC )

minσ(P̃)
e−λtV (ξ(0), 0).
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Discrete case revisited

Improved (discrete) convergence to minimizer

Suppose that there exist a0 > 0, ρ ∈ (0, 1), ` > 0, and a symmetric matrix
P, with P̃ := P + (a0m/2)ET E � 0, such that

T = M(0) + a0ρ
2M(1) + a0(1− ρ2)M(2) + `M(3) � 0,

Then, for f ∈ Fm,L, the sequence {xk} satisfies

‖xk − x?‖2 ≤ maxσ(ETE ) ‖ξk − ξ?‖P̃ ≤
maxσ(ETE )

minσ(P̃)
V (ξ0, 0)ρ2k .
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What do we gain?
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We can show that in continuous time for b̄ = 3
√

2/2 we can improve the
convergence rate to λ =

√
2
√
m

In the discrete setting for appropriate choice of the coefficients we can prove a

convergence rate ρ2 = 1−
√

2√
κ

+O(κ−1), κ→∞.
The convergence rate of Nesterov with the standard parameter choices
α = L−1, β = (

√
k − 1)/(

√
k + 1) is better that what previously proven.
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Conclusions

Differential equations are excellent starting point in terms of
designing optimization algorithms.

However for optimization algorithms stability is crucial in terms of
being able to utilize the favourable convergence rates of the
continuous system.

In terms of Lyapunov functions it is possible to improve on previous
convergence rates by relaxing some conditions by using the strong
convexity properties of our functions.
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