Optimization algorithms and differential equations: theory and insights

K.C Zygalakis

School of Mathematics, University of Edinburgh

Maxwell Institute for Mathematical Sciences

Workshop on Recent Advances in Iterative Reconstruction University College London

Collaborators

Jesus M. Sanz-Serna (UC3M)

Paul Dobson (Edinburgh)

- J. M. Sanz-Serna and K. C. Zygalakis. The connections between Lyapunov functions for some optimization algorithms and differential equations. SIAM Journal on Numerical Analysis, 59(3), 1542–1565, 2021.
- P. Dobson, J. M. Sanz-Serna and K. C. Zygalakis, On the connections between optimization algorithms, Lyapunov functions, and differential equations: theory and insights, arXiv:2305.08658, (2023)

Overview

- Introduction
 - Candidate differential equation
 - Main approach
- ODEs and optimization methods
 - Continuous time
 - Discrete time
 - Analysis of Nesterov method
- What do we gain by this analogy?
 - Structural conditions and additive Runge-Kutta methods
 - Alternative Lyapunov functions and improved convergence rates
- 4 Conclusions

Overview

- Introduction
 - Candidate differential equation
 - Main approach
- ODEs and optimization methods
 - Continuous time
 - Discrete time
 - Analysis of Nesterov method
- What do we gain by this analogy?
 - Structural conditions and additive Runge-Kutta methods
 - Alternative Lyapunov functions and improved convergence rates
- 4 Conclusions

Statement of an innocent looking problem

Optimization

Find the unconstrained minimum of a function $\pi(x)$ in \mathbb{R}^d

$$\min_{x \in \mathbb{R}^d} \pi(x)$$

Numerous applications

(a) Image classification

(b) Image reconstruction

UCL, 23/05/2023

Gradient flow

Consider the differential equation:

$$\frac{dx}{dt} = -\nabla \pi(x).$$

This has the interesting property that

$$\frac{d\pi(x)}{dt} = -\|\nabla\pi(x)\|^2 \Rightarrow \lim_{t\to\infty} x(t) = x^*,$$

where x^* is a (unique) minimizer. This makes the equation above central (or at least the simplest choice) for optimization purposes.

In an ideal world!!!

- There is nothing to be done...
- Discretize the candidate differential equations and go
 - Optimization: Go to infinity as quickly as possible (in terms of function evaluations).

In real life...

- Starting from the differential equation and discretising might not be enough in terms of mimicking the rate of convergence to equilibrium.
- Going to infinity as quickly as possible implies that you can use arbitrary large time-steps in your numerical discretization.
- Reality unfortunately comes back to bite you, as time-steps restrictions appear once you discretize your differential equation.

Overview

- Introduction
 - Candidate differential equation
 - Main approach
- ② ODEs and optimization methods
 - Continuous time
 - Discrete time
 - Analysis of Nesterov method
- What do we gain by this analogy?
 - Structural conditions and additive Runge-Kutta methods
 - Alternative Lyapunov functions and improved convergence rates
- 4 Conclusions

Optimization: Continuous case

Gradient flow:

Momentum equation:

$$\dot{x} + \nabla f(x) = 0$$

$$\dot{x} + \nabla f(x) = 0$$
 $\ddot{x} + \bar{b}\sqrt{m}\dot{x} + \nabla f(x) = 0$

Quadratic case:
$$f(x) = \frac{1}{2}x^T Qx$$
, $\sigma(Q) \in [m, L]$

Nonlinear case: $f(x) \in \mathcal{F}(m, L)$

[1] W. Su, S. Boyd, E. J. Candés NIPS 2014: 2510-2518, (2014).

UCL, 23/05/2023

Continuous time formulation

$$\dot{\xi}(t) = \bar{A}\xi(t) + \bar{B}u(t),$$

$$y(t) = \bar{C}\xi(t),$$

$$u(t) = \nabla f(y(t)).$$

where $\xi(t) \in \mathbb{R}^n$ is the state, $y(t) \in \mathbb{R}^d (d \le n)$ the output, and $u(t) = \nabla f(y(t))$ the continuous feedback input. Fixed points of the system satisfy

$$0 = \bar{A}\xi^{\star}, \quad y^{\star} = \bar{C}\xi^{\star}, \quad u^{\star} = \nabla f(y^{\star});$$

in our context $u^* = 0$ and $y^* = x^*$.

Examples

1 Gradient flow: $\dot{x} = -\nabla f(x)$.

$$\bar{A} = 0_{d \times d}, \quad \bar{B} = -I_{d \times d}, \quad \bar{C} = I_{d \times d}.$$

2 Momentum equation: $\ddot{x} + \bar{b}\sqrt{m}\dot{x} + \nabla f(x) = 0$.

$$\bar{A} = \begin{bmatrix} -\bar{b}\sqrt{m}I_d & 0_d \\ \sqrt{m}I_d & 0_d \end{bmatrix}, \quad \bar{B} = \begin{bmatrix} -(1/\sqrt{m})I_d \\ 0_d \end{bmatrix}, \quad \bar{C} = \begin{bmatrix} 0_d & I_d \end{bmatrix}.$$

UCL, 23/05/2023

Quadratic case

The continuous time formulation now becomes

$$\dot{\xi}(t) = (\bar{A} + \bar{B}Q\bar{C})\xi(t)$$

Solution is given by

$$\xi(t) = e^{(\bar{A} + \bar{B}Q\bar{C})t}\xi(0)$$

• To deduce a convergence rate to the minimizer we need to understand the spectral properties of $e^{(\bar{A}+\bar{B}Q\bar{C})t}$

Quadratic case: Gradient flow vs momentum equations

- Gradient flow: rate of convergence e^{-2mt}
- ullet Momentum equation: rate of convergence $e^{-g(ar{b})\sqrt{m}t}$

 Clearly using the first order dynamics is suboptimal in terms of convergence

The class $\mathcal{F}(m, L)$

- $\|\nabla f(x) \nabla f(y)\|^2 \le L^2 \|x y\|^2.$
- **1** $\frac{mL}{m+L} \|x-y\|^2 + \frac{1}{m+L} \|\nabla f(x) \nabla f(y)\|^2 \le (\nabla f(x) \nabla f(y))^T (x-y)$

An equivalent way of expressing these equations are the following quadratic constraints:

(Continuous) Lyapunov functions

Consider

$$V(\xi(t), t) = \alpha(t)(f(y(t)) - f(y_*)) + (\xi(t) - \xi_*)P(t)(\xi(t) - \xi_*)$$

and assume that we can find $\alpha(t)$, $P(t) \succeq 0$ such that

$$V(\xi(t),t) \leq V(\xi(t_0),t_0)$$

then

$$0 \le f(y(t)) - f(y_*) \le V(\xi(t_0, t_0))/\alpha(t) = \mathcal{O}(1/\alpha(t))$$

A small calculation

By differentiating the Lyapunov function we have

$$\dot{V} = \dot{\alpha}(t)(f(y(t)) - f(y_*))
+ \alpha(t)(\nabla f(y(t)) - \nabla f(y_*))^T \dot{y}(t)
+ 2(\xi(t) - \xi_*)^T P(t) \dot{\xi}(t)
+ (\xi(t) - \xi_*)^T \dot{P}(t)(\xi(t) - \xi_*)^T$$

Setting $e(t) = [(\xi(t) - \xi_*)^T (u(t) - u_*)^T]$ and using the strong convexity properties of f $(f \in \mathcal{F}_{m,L})$ we can obtain

$$\dot{V}(t) \leq e^{T}(t)(\cdots)e(t)$$

and if the matrix inside the parenthesis is negative definite then we are done.

UCL, 23/05/2023

A theorem for the (continuous) Lyapunov function

(Continuous) convergence to the minimizer

Suppose that there exist $\lambda > 0$, $\bar{P} \succeq 0$, and $\sigma \geq 0$ that satisfy

$$\bar{T} = \bar{M}^{(0)} + \bar{M}^{(1)} + \lambda \bar{M}^{(2)} + \sigma \bar{M}^{(3)} \leq 0$$

where

$$\begin{split} \bar{M}^{(0)} &= \begin{bmatrix} \bar{P}\bar{A} + \bar{A}^T\bar{P} + \lambda\bar{P} & \bar{P}\bar{B} \\ \bar{B}^T\bar{P} & 0 \end{bmatrix}, \\ \bar{M}^{(1)} &= \frac{1}{2} \begin{bmatrix} 0 & (\bar{C}\bar{A})^T \\ \bar{C}\bar{A} & \bar{C}\bar{B} + \bar{B}^T\bar{C}^T \end{bmatrix}, \\ \bar{M}^{(2)} &= \begin{bmatrix} \bar{C}^T & 0 \\ 0 & l_d \end{bmatrix} \begin{bmatrix} -\frac{m}{2}l_d & \frac{1}{2}l_d \\ \frac{1}{2}l_d & 0 \end{bmatrix} \begin{bmatrix} \bar{C} & 0 \\ 0 & l_d \end{bmatrix}, \\ \bar{M}^{(3)} &= \begin{bmatrix} \bar{C}^T & 0 \\ 0 & l_d \end{bmatrix} \begin{bmatrix} -\frac{mL}{m+1}l_d & -\frac{1}{2}l_d, \\ \frac{1}{2}l_d & -\frac{1}{m+1}l_d \end{bmatrix} \begin{bmatrix} \bar{C} & 0 \\ 0 & l_d \end{bmatrix}. \end{split}$$

Then the following inequality holds for $f \in \mathcal{F}_{m,L}$, $t \geq 0$,

$$f(y(t)) - f(y^*) \le e^{-\lambda t} \left(f(y(0)) - f(y^*) + (\xi(0) - \xi^*)^T \bar{P}(\xi(0) - \xi^*) \right).$$

Nonlinear case: Gradient flow vs momentum equations

- Gradient flow: Again we have that $\lambda = 2m$.
- Momentum equations: We have that $\lambda = \tilde{g}(\bar{b})\sqrt{m}$

- You lose some of the rate you can prove between the linear and the nonlinear case
- ② Still the momentum dynamics accelerate the convergence to equilibrium $(\sqrt{m} \gg m \text{ when } m \ll 1.)$
- 3 One should discretise the momentum dynamics.

Discrete time

$$\xi_{k+1} = A\xi_k + Bu_k,$$

$$u_k = \nabla f(y_k),$$

$$y_k = C\xi_k,$$

$$x_k = E\xi_k.$$

A family of algorithms

$$x_{k+1} = x_k + \beta(x_k - x_{k-1}) - \alpha \nabla f(y_k),$$

 $y_k = x_k + \gamma(x_k - x_{k-1}),$

1 For $\beta = \gamma = 0$ we recover the gradient descent

$$x_{k+1} = x_k - \alpha \nabla f(x_k).$$

- 2 For $\gamma = \beta$ we recover the Nesterov method.
- **③** For $\gamma = 0$, $\beta \neq 0$ we recover the heavy ball method.

Quadratic case

The continuous time formulation now becomes

$$\xi_{k+1} = (A + BQC)\xi_k$$

Solution is given by

$$\xi_k = (A + BQC)^k \xi(0)$$

 To deduce a convergence rate to the minimizer we need to understand the spectral properties of (A + BQC)

Quadratic case: Convergence rates

$$\|\xi_k - \xi^*\|^2 \le \rho^{2k} \|\xi_0 - \xi^*\|^2$$

- **1** Gradient descent: $\alpha = \frac{2}{m+L}$, and $\rho = \frac{\kappa-1}{\kappa+1}$
- ② Nesterov method: $\alpha=\frac{4}{3L+m}$, $\beta=\frac{\sqrt{3\kappa+1}-2}{\sqrt{3\kappa+1}+2}$, and $\rho=1-\frac{2}{\sqrt{3\kappa+1}}$
- **1** Heavy ball: $\alpha = \frac{4}{(\sqrt{L} + \sqrt{m})^2}$, $\beta = \left(\frac{\sqrt{\kappa} 1}{\sqrt{\kappa} + 1}\right)^2$, and $\rho = \frac{\sqrt{\kappa} 1}{\sqrt{\kappa} + 1}$

UCL, 23/05/2023

(Discrete) Lyapunov functions

Consider

$$V_k(\xi) = \rho^{-2k} \left(a_0 (f(x_k) - f(x^*)) + (\xi_k - \xi^*)^T P(\xi_k - \xi^*) \right),$$

and assume that we can find $a_0 > 0, P \succeq 0$ such that

$$V_{k+1}(\xi_{k+1}) \leq V_k(\xi_k),$$

we can then conclude

$$f(x_k) - f(x^*) \le \rho^{2k} \frac{V_0(\xi_0)}{a_0}.$$

If $\rho < 1$, we have found a convergence rate for $f(x_k)$ towards the optimal value $f(x^*)$.

A theorem for the (discrete) Lyapunov function

(Discrete) convergence to miminizer

Suppose that there exist $a_0>0, P\succeq 0, \ell>0$, and $\rho\in [0,1)$ such that

$$T = M^{(0)} + a_0 \rho^2 M^{(1)} + a_0 (1 - \rho^2) M^{(2)} + \ell M^{(3)} \leq 0,$$

where

$$M^{(0)} = \begin{bmatrix} A^T PA - \rho^2 P & A^T PB \\ B^T PA & B^T PB \end{bmatrix}, \quad M^{(1)} = N^{(1)} + N^{(2)}, \quad M^{(2)} = N^{(1)} + N^{(3)}, \quad M^{(3)} = N^{(4)},$$

with

$$\begin{split} & \mathcal{N}^{(1)} = \begin{bmatrix} EA - C & EB \\ 0 & I_d \end{bmatrix}^T \begin{bmatrix} \frac{1}{2}I_d & \frac{1}{2}I_d \\ \frac{1}{2}I_d & 0 \end{bmatrix} \begin{bmatrix} EA - C & EB \\ 0 & I_d \end{bmatrix}, \\ & \mathcal{N}^{(2)} = \begin{bmatrix} C - E & 0 \\ 0 & I_d \end{bmatrix}^T \begin{bmatrix} -\frac{m}{2}I_d & \frac{1}{2}I_d \\ \frac{1}{2}I_d & 0 \end{bmatrix} \begin{bmatrix} C - E & 0 \\ 0 & I_d \end{bmatrix}, \\ & \mathcal{N}^{(3)} = \begin{bmatrix} C^T & 0 \\ 0 & I_d \end{bmatrix} \begin{bmatrix} -\frac{m}{2}I_d & \frac{1}{2}I_d \\ \frac{1}{2}I_d & 0 \end{bmatrix} \begin{bmatrix} C & 0 \\ 0 & I_d \end{bmatrix}, \\ & \mathcal{N}^{(4)} = \begin{bmatrix} C^T & 0 \\ 0 & I_d \end{bmatrix} \begin{bmatrix} -\frac{mL}{m+1}I_d & -\frac{1}{2}I_d \\ \frac{1}{2}I_d & -\frac{1}{12}I_d \end{bmatrix} \begin{bmatrix} C & 0 \\ 0 & I_d \end{bmatrix}. \end{split}$$

Then, for $f \in \mathcal{F}_{m,L}$, the sequence $\{x_k\}$ satisfies $f(x_k) - f(x^\star) \leq \frac{a_0(f(x_0) - f(x^\star)) + (\xi_0 - \xi^\star)^{\mathsf{T}} P(\xi_0 - \xi^\star)}{a_0} \rho^{2k}$.

Nesterov method

We introduce $\delta = \sqrt{m\alpha}$ and $d_k = \frac{1}{\delta}(x_k - x_{k-1})$, so we can re-write our algorithm as:

$$d_{k+1} = \beta d_k - \frac{\alpha}{\delta} \nabla f(y_k),$$

$$x_{k+1} = x_k + \delta \beta d_k - \alpha \nabla f(y_k),$$

$$y_k = x_k + \delta \beta d_k.$$

Setting $\xi_k = [d_k^T, x_k^T]^T \in \mathbb{R}^{2d}$ we can express the algorithm in the discrete form with

$$A = \begin{bmatrix} \beta I_d & 0 \\ \delta \beta I_d & I_d \end{bmatrix}, \quad B = \begin{bmatrix} -(\alpha/\delta)I_d \\ -\alpha I_d \end{bmatrix}, \quad C = \begin{bmatrix} \delta \beta I_d & I_d \end{bmatrix}, \quad E = \begin{bmatrix} 0 & I_d \end{bmatrix}.$$

Dimension reduction

• The matrix A is a a Kronecker product of a 2×2 matrix and I_d ,

$$A = \begin{bmatrix} \beta & 0 \\ \delta \beta & 1 \end{bmatrix} \otimes I_d;$$

- ullet The matrices B, C and E have a similar Kronecker product structure.
- It is then natural to consider symmetric matrices P of the form

$$P = \widehat{P} \otimes I_d, \qquad \widehat{P} = \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix},$$

• T will also have a Kronecker product structure

$$T = \widehat{T} \otimes I_d, \qquad \widehat{T} = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{12} & t_{22} & t_{23} \\ t_{13} & t_{23} & t_{33} \end{bmatrix}.$$

UCL, 23/05/2023

Structure of \widehat{T}

We have

$$\begin{split} t_{11} &= \beta^2 p_{11} + 2\delta \beta^2 p_{12} + \delta^2 \beta^2 p_{22} - \rho^2 p_{11} - \delta^2 \beta^2 m/2, \\ t_{12} &= \beta p_{12} + \delta \beta p_{22} - \rho^2 p_{12} - \delta \beta m/2 + \rho^2 \delta \beta m/2, \\ t_{13} &= -\delta^{-1} \alpha \beta p_{11} - 2\alpha \beta p_{12} - \delta \alpha \beta p_{22} + \delta \beta/2, \\ t_{22} &= p_{22} - \rho^2 p_{22} - m/2 + \rho^2 m/2, \\ t_{23} &= -\delta^{-1} \alpha p_{12} - \alpha p_{22} + 1/2 - \rho^2/2, \\ t_{33} &= \delta^{-2} \alpha^2 p_{11} + 2\delta^{-1} \alpha^2 p_{12} + \alpha^2 p_{22} + \alpha^2 L/2 - \alpha. \end{split}$$

Our task is to find $\rho \in [0,1)$, p_{11} , p_{12} , and p_{22} that lead to $\widehat{T} \leq 0$ and $\widehat{P} \succeq 0$ (which imply $T \leq 0$ and $P \succeq 0$).

Solution

The algebra becomes simpler if we represent β and ρ^2 as:

$$\beta = 1 - b\delta, \quad \rho^2 = 1 - r\delta.$$

Note that we are interested in $r \in (0, 1/\delta]$ so as to get $\rho^2 \in [0, 1)$. Going through the algebra we find

$$\widehat{P} = \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} = \frac{m}{2} \begin{bmatrix} (1 - r\delta)^2 & r(1 - r\delta) \\ r(1 - r\delta) & r^2 \end{bmatrix}, \quad \alpha \leq \frac{1}{L}, \quad r \leq 1$$

as well as $\Xi = 0$ where

$$\Xi := \Xi_{\delta}(r,b) = (r+\delta)(1-\delta^2)b^2 - 2(1+r^2)(1-\delta^2)b + (r^3-3r^2\delta+3r-\delta).$$

• Since $\delta = \sqrt{m\alpha}$ and $\alpha \leq L^{-1}$, this implies that

$$\rho^2 = 1 - \frac{r}{\sqrt{\kappa}}$$

hence the Nesterov algorithm maintains the acceleration of the original differential equation.

Convergence of the algorithm

Theorem

With the choices of parameters as in the previous slide the matrix T is negative semi-definite. As a result, for any x_{-1} , x_0 , the sequence

$$\rho^{-2k}\Big(f(x_k)-f(x_{\star})+\left[d_k^{\mathcal{T}},x_k^{\mathcal{T}}-x_{\star}^{\mathcal{T}}\right]P\left[d_k^{\mathcal{T}},x_k^{\mathcal{T}}-x_{\star}^{\mathcal{T}}\right]^{\mathcal{T}}\Big)$$

decreases monotonically, which, in particular, implies

$$f(x_k) - f(x_{\star}) \le C \rho^{2k}$$

with

$$C = f(x_0) - f(x^*) + \frac{m}{2} \left\| \frac{1 - r\delta}{\delta} (x_0 - x_{-1}) + r(x_0 - x^*) \right\|^2.$$

Overview

- Introduction
 - Candidate differential equation
 - Main approach
- ODEs and optimization methods
 - Continuous time
 - Discrete time
 - Analysis of Nesterov method
- What do we gain by this analogy?
 - Structural conditions and additive Runge-Kutta methods
 - Alternative Lyapunov functions and improved convergence rates
- 4 Conclusions

Connection with the ODE

Convergence between discrete and continuous Lyapunov function

Fix the parameter $\bar{b}>0$ and the initial conditions x(0), $\dot{x}(0)$ for the momentum equations. For small h>0, consider the Nesterov method with parameters $\alpha=h^2$ and $\beta=\beta_h=1-\bar{b}\sqrt{m}h+o(h)$. Assume that the initial points x_{-1} , x_0 are such that, as $h\downarrow 0$, $x_0\to x(0)$ and $(1/h)(x_0-x_{-1})\to \dot{x}(0)$. Then, in the limit $kh\to t$,

- **1** $x_k \to x(t)$ and $(1/h)(x_{k+1} x_k) \to \dot{x}(t)$.
- 2 The discrete Lyapunov function converges to the continuous Lyapunov function

Optimization algorithms as integrators

$$\frac{d}{dt}z = g^{[1]}(z) + g^{[2]}(z) + g^{[3]}(z) := \begin{bmatrix} -\overline{b}\sqrt{m}v \\ 0 \end{bmatrix} + \begin{bmatrix} -\frac{1}{\sqrt{m}}\nabla f(x) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \sqrt{m}v \end{bmatrix};$$

Nesterov method can be expressed as

$$Z_{k,1} = z_k,$$

$$Z_{k,2} = z_k + hg^{[1]}(Z_{k,1}),$$

$$Z_{k,3} = z_k + hg^{[1]}(Z_{k,1}) + hg^{[3]}(Z_{k,2}),$$

$$Z_{k,4} = z_k + hg^{[1]}(Z_{k,1}) + hg^{[3]}(Z_{k,2}) + hg^{[2]}(Z_{k,3}),$$

$$z_{k+1} = z_k + hg^{[1]}(Z_{k,1}) + hg^{[2]}(Z_{k,3}) + hg^{[3]}(Z_{k,4}).$$

UCL, 23/05/2023

Is consistency enough?

- From an intuitive point of view the previous theorem is obvious, i.e you start with and ODE you discretise it and the numerical algorithm inherits its properties for some finite h
- ② The key however is how large this h can be, while maintaining the negative definiteness of the matrix T.
- **9** From consistency in order to achieve acceleration one needs to be able to preserve the negative definiteness of T for time steps $h \le cL^{-1/2}$
- What is special about Nesterov?

Structural conditions of integrators

$$x_{k+1} = x_k + \beta(x_k - x_{k-1}) - \alpha \nabla f(y_k),$$

$$y_k = x_k + \gamma(x_k - x_{k-1}),$$

- Key quantity $c:=t_{11}/(m\delta)$, when $\gamma=0$, $c=\cdots+\delta(\kappa-1)\beta^2/2$.
- For acceleration, δ has to be $\mathcal{O}(1/\sqrt{\kappa})$ which makes it impossible for c to be ≤ 0 .
- Presence of κ in t_{11} relates to the appearance of L in the matrix $N^{(1)}$
- This can be indeed eliminated if EA C = 0
- In words: the point $y_k = C\xi_k$ where the gradient is evaluated has to coincide with the point $x_{k+1} = EA\xi_k$ that the algorithm would yield if $u_k = \nabla f(y_k)$ happened to vanish

[3] L. Lessard, B. Recht, A. Packard, SIAM J. Optim., 26(1), 57-95. (2016)

Revisiting the Lyapunov function

$$V(\xi,t) = e^{\lambda t} \left(f(y(t)) - f(y^*) + (\xi(t) - \xi^*)^T \bar{P}(\xi(t) - \xi^*) \right)$$

- ullet We can try to relax the condition $ar{P}\succeq 0$
- Through strong convexity we know that

$$f(y(t)) - f(y^*) \ge \frac{m}{2} ||y(t) - y^*||^2.$$

Hence

$$V(\xi,t) \geq e^{\lambda t} \left[(\xi(t) - \xi^{\star})^{T} \left(\frac{m}{2} \bar{C}^{T} \bar{C} + \bar{P} \right) (\xi(t) - \xi^{\star}) \right]$$

• If we can still establish that $V(\xi,t)$ is non-increasing we are good as long $\bar{C}^T\bar{C}+\bar{P}\succeq 0$

UCL, 23/05/2023

Continuous case revisited

Improved (continuous) convergence to minimizer

Suppose that there exist $\lambda>0$, $\sigma\geq0$ and a symmetric matrix \bar{P} with $\widetilde{P}:=\bar{P}+(m/2)\bar{C}^{\mathcal{T}}\bar{C}\succ0$, that satisfy

$$\bar{T} = \bar{M}^{(0)} + \bar{M}^{(1)} + \lambda \bar{M}^{(2)} + \sigma \bar{M}^{(3)} \leq 0$$

Then the following inequality holds for $f \in \mathcal{F}_{m,L}$, $t \geq 0$

$$\|y(t)-y_*\|^2 \leq \max \sigma(\bar{C}^T\bar{C}) \|\xi(t)-\xi^*\|_{\widetilde{P}} \leq \frac{\max \sigma(C^TC)}{\min \sigma(\widetilde{P})} e^{-\lambda t} V(\xi(0),0).$$

Discrete case revisited

Improved (discrete) convergence to minimizer

Suppose that there exist $a_0 > 0$, $\rho \in (0,1)$, $\ell > 0$, and a symmetric matrix P, with $\widetilde{P} := P + (a_0 m/2) E^T E \succ 0$, such that

$$T = M^{(0)} + a_0 \rho^2 M^{(1)} + a_0 (1 - \rho^2) M^{(2)} + \ell M^{(3)} \leq 0,$$

Then, for $f \in \mathcal{F}_{m,L}$, the sequence $\{x_k\}$ satisfies

$$\|x_k - x_\star\|^2 \leq \max \sigma(E^T E) \|\xi_k - \xi^\star\|_{\widetilde{P}} \leq \frac{\max \sigma(E^T E)}{\min \sigma(\widetilde{P})} V(\xi_0, 0) \rho^{2k}.$$

What do we gain?

- We can show that in continuous time for $\bar{b} = 3\sqrt{2}/2$ we can improve the convergence rate to $\lambda = \sqrt{2}\sqrt{m}$
- In the discrete setting for appropriate choice of the coefficients we can prove a convergence rate $\rho^2 = 1 - \frac{\sqrt{2}}{\sqrt{\kappa}} + \mathcal{O}(\kappa^{-1}), \quad \kappa \to \infty.$
- The convergence rate of Nesterov with the standard parameter choices $\alpha = L^{-1}, \beta = (\sqrt{k} - 1)/(\sqrt{k} + 1)$ is better that what previously proven.

Overview

- Introduction
 - Candidate differential equation
 - Main approach
- ODEs and optimization methods
 - Continuous time
 - Discrete time
 - Analysis of Nesterov method
- What do we gain by this analogy?
 - Structural conditions and additive Runge-Kutta methods
 - Alternative Lyapunov functions and improved convergence rates
- 4 Conclusions

Conclusions

- Differential equations are excellent starting point in terms of designing optimization algorithms.
- However for optimization algorithms stability is crucial in terms of being able to utilize the favourable convergence rates of the continuous system.
- In terms of Lyapunov functions it is possible to improve on previous convergence rates by relaxing some conditions by using the strong convexity properties of our functions.

Bibliography

- M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado. Analysis of optimization algorithms via integral quadratic constraints: nonstrongly convex problems. SIAM Journal on Optimization, 28(3):2654–2689, 2018
- W. Su, S. Boyd, and E. J. Candès. A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights. *Journal of Machine Learning Research*, 17(153):1–43, 2016.
- 3 L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.